
Analogue of topological entropy for some
infinite-dimensional systems

Mykhailo Kuznietsov

2015



Let (X , d) be metric space, T ∈ C (X → X ). Metric dn on X is
defined as

dn(x , y) = max
0≤j≤n

d(T j(x),T j(y)).

In other words, it is the maximum distance between the orbits of x
and y after n iterations. As we know, the set is called
(n, 𝜀)-separated for fixed 𝜀 > 0 if pairwise distances between its
points in metric dn are not less then 𝜀. The cardinality of the
biggest of such sets is denoted as N(n, 𝜀).
Then the topological entropy of function T is defined by

h(T ) = lim
𝜀→0

lim sup
n→∞

lnN(n, 𝜀)

n
.



However the definition of the topological entropy is not effective
for describing the complexity of infinite-dimensional dynamical
systems. In particular, for dynamical systems generated by
difference equations with continuous argument x(t + 1) = f (x(t)),
ie when X = C ([0, 1], I ) and T has the form
T (𝜙)(t) = f (𝜙(t)), f ∈ C (I , I ), the value of topological entropy is
either 0 or +∞. Thus such definition of entropy does not help us
to conduct thorough analysis of such systems. The purpose – to
offer an analogue of definition of entropy, by which it is possible to
evaluate the complexity of such dynamical systems more effectively.



For systems considered above we gain the analogue, which can
take finite values, by multiplying the topological entropy by 𝜀 :

h̃(T ) = lim sup
𝜀→0

𝜀 lim
n→∞

lnN(n, 𝜀)

n
.

This introduced value h̃(T ) is finite and nonzero iff the entropy of
one-dimensional function f is finite and nonzero.



The idea of the proof is based on estimating the value N(n, 𝜀).
If M(n, 𝜀) – maximum (n, 𝜀)-separated set for f , we can show that
in Hausdorff metric:

N(n, 𝜀) ≤ (M(n, 𝜀/4)2/2)([2/𝜀]+1).

By using this inequality it is easy to get h̃(T ) ≤ 4h(f ), which
proves finiteness h̃(T ) in the case of finite h(f ).



The inequality

N(n, 𝜀) ≤ (M(n, 𝜀/4)2/2)[2/𝜀]+1

follows from the next reasons.
We can construct such cover of [0, 1] × I ,
that the distance dn between
two functions intersecting the same set
of elements of this cover, is less than 𝜀.
Moreover this cover consists [2/𝜀] + 1
columns, each with M(n, 𝜀/4) elements.

We can establish a correspondence between the continuous
function and a set of elements that this function intersects. By
estimating the number of such sets, we get the inequality.



In the other side the value of N(n, 𝜀) can be estimated by

constructing M(n, 𝜀)[
1
3𝜀
] (n, 𝜀)-separated functions. These functions

are defined as horizontal segments of length 2𝜀 at different heights,
joined by segments with the base of 𝜀. The height of each of
horizontal segments will be one of the values of some maximum

(n, 𝜀)-separated set. We can build M(n, 𝜀)[
1
3𝜀
] such functions.

The gained functions will be
(n, 𝜀)−separated for T ,

so N(n, 𝜀) ≥ M(n, 𝜀)[
1
3𝜀
].

Thus h̃(T ) ≥ 1
3h(f ).



In the more general case when X = C (K , I ) and T has the form
T (𝜙)(t) = f (𝜙(t)), f ∈ C (I , I ), where K – any compact, we can
consider value

h̃(T ) = lim sup
𝜀→0

NK (𝜀)−1 lim
n→∞

lnN(n, 𝜀)

n
,

where NK (𝜀) denotes the minimum number of elements in the
𝜀-cover of compact K by open balls.
Through similar reasoning, we can prove that this value is finite
when the h(f ) is finite.
In addition, if K ⊂ Rd , then h̃(T ) > 0, where h(f ) > 0.



If we consider the system of (C (K , L),T ), where K , L – arbitrary
compacts, then for the evaluation of its complexity we need to
analyze the properties of the compacts K and L, which are related
to the number of elements in their 𝜀−covers and with the structure
of this 𝜀−covers, such as mean dimension.



Thank you for your attention!


