Dynamical Systems and Their Applications June 23 - 27, 2015, Kyiv, Ukraine

ON DYNAMICAL SYSTEM OF CONFLICT WITH FAIR REDISTRIBUTION OF VITAL RESOURCES

Volodymyr Koshmanenko

Institute of Mathematics NAN Ukraine, Kyiv, Ukraine e-mail: koshman63@googlemail.com

We discuss the properties of dynamical system of conflict (DSC). The notion of DSC was introduced in works [6, 7]) for modelling the alternative interaction between opponents. Let the probability measures μ , ν describe the starting distribution of the vital resource space Ω for a pair of opponents A, B.

The problem is to find the **law** of conflict interaction \star between A, B which ensures the compromise redistribution of Ω .

Assume that the evolution changes of $\mu(t), \nu(t)$ are governed by the following nonlinear law of conflict dynamic (cf. with [1, 5]):

$$\dot{\mu} = \frac{\mu\Theta - \tau}{z}, \quad \dot{\nu} = \frac{\nu\Theta - \tau}{z},$$

where $\Theta = \Theta(\mu, \nu)$ is a positive quadratic form which fixes the so called conflict exponent describing the

global conflict interaction

between opponents A, B and $\tau = \tau(\mu, \nu)$ has sense of the **occupation**

exponent (the local interaction).

The meanings of τ at each moment of time show the values of presence of opponents A, B on the opposite territory. The denominator z ensures that measures $\mu(t), \nu(t)$ are probability for all t > 0.

We prove that under the appropriate construction of Θ and τ there exists the ω -limit state $\{\mu^{\infty}, \nu^{\infty}\}$ which corresponds to the

fair redistribution

of the vital resources space Ω between opponents A, B. The fair redistribution means that the opponents A, B reach the

compromise, equilibrium state.

That is the limit measures μ^{∞} , ν^{∞} coincide with the normalized components of the classic Jordan decomposition of the signed measure $\omega = \mu - \nu = \omega_{+} - \omega_{-}$, i.e.

$$\mu^{\infty} = \mu_+ := \frac{\omega_+}{\omega_+(\Omega)}, \quad \nu^{\infty} = \nu_- := \frac{\omega_-}{\omega_-(\Omega)}.$$

In what follows we come to the discrete time t = N = 0, 1, ... and use the system of difference equations:

$$\begin{cases} \mu^{N+1}(E) = \mu^{N}(E) + \mu^{N}(E)\Theta^{N} - \tau^{N}(E), \\ \nu^{N+1}(E) = \nu^{N}(E) + \nu^{N}(E)\Theta^{N} - \tau^{N}(E), \ E \in \mathcal{B}, \end{cases}$$
(1)

where we omit normalization denominators.

In [11] it was proved (see also [6, 7, 12]) that each trajectory $\{\mu^N, \nu^N\}, N \geq 1$ starting with any couple of probability measures $\mu, \nu \in \mathcal{M}_1^+(\Omega), \ \mu \neq \nu$, converges in the weak sense to a limit fixed point $\{\mu^{\infty}, \nu^{\infty}\}$. This point creates an equilibrium state for the system and is compromise in the sense $\mu^{\infty} \perp \nu^{\infty}$. Moreover, for each dynamical system of conflict $\{\Omega, \mathcal{M}_1^+(\Omega), \star\}$ given by (1), there exists the limit ω -set Γ^{∞} [13]. It is attractor consisting all couples of mutually singular measures from $\mathcal{M}_1^+(\Omega)$. Thus,

$$\Gamma^{\infty} = \{ \{ \mu^{\infty}, \nu^{\infty} \} \mid \mu^{\infty}, \nu^{\infty} \in \mathcal{M}_{1}^{+}(\Omega), \ \mu^{\infty} \perp \nu^{\infty} \}.$$

In the simplest situation the dynamical system of conflict can be written in terms of coordinates of stochastic vectors $p, r \in \mathbf{R}^n_+, n \geq 2$ corresponding to the opponent sides:

$$p_i^{N+1} = 1/z^N (p_i^N \Theta^N - \tau_i^N), \quad r_i^{N+1} = 1/z^N (r_i^N \Theta^N - \tau_i^N), \ i = 1, ..., n.$$

Here $\Theta^N = (p^N, r^N)$ be the inner product between vectors p^N, r^N and $\tau_i^N = p_i^N r_i^N$. We claim that each trajectory $\{p^N, r^N\}_{N=0}^{\infty}$ starting with a couple of stochastic vectors $\{p^0 = p, r^0 = r\}, \ p \neq r$ converges with $N \to \infty$ to a fixed point $\{p^\infty, r^\infty\}$ which creates a compromise state, $p^\infty \perp r^\infty$. This state is uniquely determined by the starting couple $\{p, r\}$ and has an explicit coordinate representation:

$$p_i^{\infty} = \frac{d_i}{D} > 0, \ i \in N_+, \ r_k^{\infty} = -\frac{d_k}{D} > 0, \ k \in N_-, \ D = 1/2 \sum_{i=1}^n |d_i|,$$
(2)
$$p_i^{\infty} = 0, \ i \notin N_+, \ r_k^{\infty} = 0, \ k \notin N_-,$$

where

$$d_i = p_i - r_i, \quad N_+ = \{i : d_i > 0\}, \quad N_- = \{k : d_k < 0\}.$$

In [10, 9] we generalized above constructions for the cases of piecewise uniformly distributed measures, self-similar, and similar structure measures. In the most general situation we obtain the similar results in terms of abstract measures (for detail see [11, 12]).

We will deal with DSC $\{\Omega, \mathcal{M}^+_{1,\mathrm{ac}}(\Omega), \star\}$ of natural conflict (here $\mathcal{M}^+_{1,\mathrm{ac}}$ denotes a class of the absolutely continuous measures). A term "natural" means that conflict composition \star is defined by a fixed law of the conflict interaction between opponents and their strategies do not change during the time evolution.

Let us consider an abstract variant of DSC at discrete time

$$\mu^{N+1} = \mu^N \star \nu^N, \ \nu^{N+1} = \nu^N \star \mu^N, \ N = 0, 1...$$

Their state trajectories

$$\left\{\begin{array}{c}\mu^{N}\\\nu^{N}\end{array}\right\} \xrightarrow{\star} \left\{\begin{array}{c}\mu^{N+1}\\\nu^{N+1}\end{array}\right\}, \quad N = 0, 1, \dots$$
(3)

are governed by the following *law of conflict dynamic*:

$$\begin{cases} \mu^{N+1}(E) = \frac{1}{z^N} [\mu^N(E)(\Theta^N + 1) - \tau^N(E)], \\ \nu^{N+1}(E) = \frac{1}{z^N} [\nu^N(E)(\Theta^N + 1) - \tau^N(E)], & E \in \mathcal{B}, \end{cases}$$
(4)

where measures $\mu^0 = \mu$, $\nu^0 = \nu$ correspond to an initial state. The conflict exponent Θ^N in (4) is defined as

$$\Theta^{N} = \int_{\Omega} \int_{\Omega} \mathcal{K}(x, y) \varphi^{N}(x) \psi^{N}(y) dx dy,$$

where $\mathcal{K}(x,y)$ denotes a kernel of some positive bounded operator K in $L^2(\Omega, d\lambda)$ and

$$\varphi^N(x) = \sqrt{\rho^N(x)}, \ \psi^N(x) = \sqrt{\sigma^N(x)},$$

where $\rho^N(x), \sigma^N(x)$ are the Radon-Nikodym derivatives of μ^N, ν^N with respect to λ . Thus,

$$\Theta_N = (K\varphi^N, \psi^N)_{L^2(\Omega, d\lambda)},$$

Further, τ^N in (4) stands for the occupation measure. Its values characterize the presence of opponents on opposite territories. By definition,

$$\tau^{N}(E) = \nu^{N}(E_{+}) + \mu^{N}(E_{-}), \ E_{+} = E \cap \Omega_{+}, \ E_{-} = E \cap \Omega_{-}, \ (5)$$

where $\Omega = \Omega_{-} \cup \Omega_{+}$ corresponds to the Hahn-Jordan decomposition (see [3, 14]) of the starting signed measure $\omega = \mu - \nu$. Finally, the normalizing denominator in (4) is defined as

$$z^{N} = \Theta^{N} + 1 - W^{N}, \quad W^{N} = \mu^{N}(\Omega_{-}) + \nu^{N}(\Omega_{+}).$$

It is easy to see that all measures $\mu^N, \nu^N, N \ge 1$ in (4) are absolutely continuous and probability, i.e., $\mu^N, \nu^N \in \mathcal{M}^+_{1,\mathrm{ac}}(\Omega)$.

The DSC defined by (4) has two separate sets of fixed points. The first set contains all couples of identical measures from $\mathcal{M}_{1,\mathrm{ac}}^+(\Omega)$. Indeed, if $\mu = \nu$, then $\Theta^N = \mathrm{const}$ for all N and $\mu^N(E) = \mu(E) = \nu^N(E) = \nu(E)$ for each $E \in \mathcal{B}$. The second set is composed from measures $\mu, \nu \in \mathcal{M}_{1,\mathrm{ac}}^+(\Omega)$ which are orthogonal, $\mu \perp \nu$. In this case $\tau^N = 0 = W^N$ and $\Theta^N + 1 = z^N$ for all N. Due to (4) we find that $\mu^N = \mu, \ \nu^N = \nu$.

In all other cases, when the starting measures are different, $\mu \neq \nu$, and mutually non-singular the following theorem is true. **Theorem** Let $\{\Omega, \mathcal{M}_{1,\mathrm{ac}}^+(\Omega), \star\}$ be a DSC generated by the system of difference equations (4). Then each its trajectory (3) starting with a couple of probability measures $\mu^0 = \mu, \nu^0 = \nu \in \mathcal{M}_{1,\mathrm{ac}}^+(\Omega), \mu \neq \nu$ converges to the fixed point corresponding to the limit state $\{\mu^{\infty}, \nu^{\infty}\}$ with

$$\mu^{\infty}(E) = \lim_{N \to \infty} \mu^{N}(E), \ \nu^{\infty}(E) = \lim_{N \to \infty} \nu^{N}(E), \ E \in \mathcal{B},$$
(6)

where

$$\mu^{\infty}(E) = \frac{\mu(E_{+}) - \nu(E_{+})}{D} = \mu_{+}(E), \tag{7}$$

$$\nu^{\infty}(E) = -\frac{\mu(E_{-}) - \nu(E_{-})}{D} = \nu_{-}(E)$$

with μ_+, ν_- defined as the Hahn normalized components of $\omega = \mu - \nu$.

In (7) $D = 1/2 f_{\Omega} |\rho(x) - \sigma(x)| dx$ stands for the total difference between measures μ, ν .

References

- P.T. Coleman, R. Vallacher, A. Nowak, L. Bui-Wrzosinska, Interactable Conflict as an Attractor: Presenting a Dynamical-Systems Approach to Conflict, Escalation, and Interactability, IACM Meeting Paper (2007).
- [2] A.A. Chikrii, Conflict-Controlled Processes, Kluwer Academ. Publ., Boston-London-Dordrecht, 1997.
- [3] N. Danford and J.T. Schwartz, *Linear Operators*, Part I, New York, London, 1958.
- [4] J.M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science, Addison-Wesley Publ. Co., 1997.
- [5] M.H.G. Hoffmann, Power and Limits of Dynamical Systems Theory in Conflict Analysis, IACM Meeting Paper (2007).
- [6] V. Koshmanenko, On the Conflict Theorem for a Pair of Stochastic Vectors, Ukrainian Math. J., 55 (2003), no. 4, 555-560.
- [7] V. Koshmanenko, Theorem of conflicts for a pair of probability measures, Math. Methods of Operations Research, 59, (2004), no. 2, 303–313.
- [8] V. Koshmanenko, N.Kharchenko, Spectral properties of image measures after conflict interactions, *Theory of Stochastic Pro*cesses, **10**(26), N 3-4, 73-81, (2004).
- [9] V.Koshmanenko, I.Samoilenko, The conflict triad dynamical system, Commun Nonlinear Sci Numer Simulat 16 (2011), 2917-2935.

- [10] V.D.Koshmanenko, Reconstruction of the spectral type of limiting distributions in dynamical conflict systems, Ukrainian Math. J., 59, (2007), no. 6, 771-784.
- [11] V. Koshmanenko, Existence theorems of the ω-limit states for conflict dynamical systems, Methods Funct. Anal. Topology, 20 (2014), no. 4, 379-390.
- [12] V.D.Koshmanenko, S.M. Petrenko, Hahn-Jordan decomposition as an equilibrium state of the conflict system, Ukrainian Math. J. 2015.
- [13] A.N.Sharkovsky, Yu.L. Maistrenko, E.Yu. Romanenko, *Differ*ence equations and their applications, "Naukova dumka" 1986, 280pp.
- [14] G.E. Shilov, B.L. Gurevich, Integral, measure, and derevatives, Nauka, Moscow, 1964.