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We discuss the properties of dynamical system of conflict (DSC).

The notion of DSC was introduced in works [6, 7]) for

modelling the alternative interaction between opponents.

Let the probability measures µ, ν describe the starting distribution

of the vital resource space Ω for a pair of opponents A,B.

The problem is to find the law of conflict interaction ? between

A,B which ensures the compromise redistribution of Ω.
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Assume that the evolution changes of µ(t), ν(t) are governed by

the following nonlinear law of conflict dynamic (cf. with [1, 5]):

µ̇ =
µΘ− τ

z
, ν̇ =

νΘ− τ

z
,

where Θ = Θ(µ, ν) is a positive quadratic form which fixes the so

called conflict exponent describing the

global conflict interaction

between opponents A,B and τ = τ (µ, ν) has sense of the

occupation

exponent (the local interaction).

The meanings of τ at each moment of time show the values of pres-

ence of opponents A,B on the opposite territory. The denominator

z ensures that measures µ(t), ν(t) are probability for all t > 0.

We prove that under the appropriate construction of Θ and τ there

exists the ω-limit state {µ∞, ν∞} which corresponds to the

fair redistribution

of the vital resources space Ω between opponents A,B. The fair

redistribution means that the opponents A,B reach the

compromise, equilibrium state.

That is the limit measures µ∞, ν∞ coincide with the normalized

components of the classic Jordan decomposition of the signed mea-

sure ω = µ− ν = ω+ − ω−, i.e.

µ∞ = µ+ :=
ω+

ω+(Ω)
, ν∞ = ν− :=

ω−
ω−(Ω)

.
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In what follows we come to the discrete time t = N = 0, 1, ... and

use the system of difference equations:




µN+1(E) = µN(E) + µN(E)ΘN − τN(E),

νN+1(E) = νN(E) + νN(E)ΘN − τN(E), E ∈ B,
(1)

where we omit normalization denominators.

In [11] it was proved (see also [6, 7, 12]) that each trajectory

{µN , νN}, N ≥ 1 starting with any couple of probability measures

µ, ν ∈ M+
1 (Ω), µ 6= ν, converges in the weak sense to a limit fixed

point {µ∞, ν∞}. This point creates an equilibrium state for the sys-

tem and is compromise in the sense µ∞ ⊥ ν∞. Moreover, for each

dynamical system of conflict {Ω,M+
1 (Ω), ?} given by (1), there ex-

ists the limit ω-set Γ∞ [13]. It is attractor consisting all couples of

mutually singular measures from M+
1 (Ω). Thus,

Γ∞ = {{µ∞, ν∞} | µ∞, ν∞ ∈M+
1 (Ω), µ∞ ⊥ ν∞}.

3



In the simplest situation the dynamical system of conflict can be

written in terms of coordinates of stochastic vectors p, r ∈ Rn
+, n ≥ 2

corresponding to the opponent sides:

pN+1
i = 1/zN(pN

i ΘN−τN
i ), rN+1

i = 1/zN(rN
i ΘN−τN

i ), i = 1, ..., n.

Here ΘN = (pN , rN) be the inner product between vectors pN , rN

and τN
i = pN

i rN
i . We claim that each trajectory {pN , rN}∞N=0 start-

ing with a couple of stochastic vectors {p0 = p, r0 = r}, p 6= r

converges with N → ∞ to a fixed point {p∞, r∞} which creates a

compromise state, p∞ ⊥ r∞. This state is uniquely determined by

the starting couple {p, r} and has an explicit coordinate representa-

tion:

p∞i =
di

D
> 0, i ∈ N+, r∞k = −dk

D
> 0, k ∈ N−, D = 1/2

n∑

i=1
|di|,
(2)

p∞i = 0, i /∈ N+, r∞k = 0, k /∈ N−,

where

di = pi − ri, N+ = {i : di > 0}, N− = {k : dk < 0}.
In [10, 9] we generalized above constructions for the cases of piece-

wise uniformly distributed measures, self-similar, and similar struc-

ture measures.
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In the most general situation we obtain the similar results in terms

of abstract measures (for detail see [11, 12]).

We will deal with DSC {Ω,M+
1,ac(Ω), ?} of natural conflict (here

M+
1,ac denotes a class of the absolutely continuous measures). A term

”natural” means that conflict composition ? is defined by a fixed law

of the conflict interaction between opponents and their strategies do

not change during the time evolution.

Let us consider an abstract variant of DSC at discrete time

µN+1 = µN ? νN , νN+1 = νN ? µN , N = 0, 1...

Their state trajectories




µN

νN





?−→




µN+1

νN+1



 , N = 0, 1, ... (3)

are governed by the following law of conflict dynamic:




µN+1(E) = 1
zN [µN(E)(ΘN + 1)− τN(E)],

νN+1(E) = 1
zN [νN(E)(ΘN + 1)− τN(E)], E ∈ B,

(4)

where measures µ0 = µ, ν0 = ν correspond to an initial state. The

conflict exponent ΘN in (4) is defined as

ΘN =
∫

Ω

∫

Ω
K(x, y)ϕN(x)ψN(y)dxdy,

where K(x, y) denotes a kernel of some positive bounded operator

K in L2(Ω, dλ) and

ϕN(x) =
√
ρN(x), ψN(x) =

√
σN(x),

where ρN(x), σN(x) are the Radon-Nikodym derivatives of µN , νN

with respect to λ. Thus,

ΘN = (KϕN , ψN)L2(Ω, dλ),
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Further, τN in (4) stands for the occupation measure. Its values

characterize the presence of opponents on opposite territories. By

definition,

τN(E) = νN(E+) + µN(E−), E+ = E
⋂

Ω+, E− = E
⋂

Ω−, (5)

where Ω = Ω−
⋃

Ω+ corresponds to the Hahn-Jordan decomposition

(see [3, 14]) of the starting signed measure ω = µ − ν. Finally, the

normalizing denominator in (4) is defined as

zN = ΘN + 1−WN , WN = µN(Ω−) + νN(Ω+).

It is easy to see that all measures µN , νN , N ≥ 1 in (4) are abso-

lutely continuous and probability, i.e., µN , νN ∈M+
1,ac(Ω).

The DSC defined by (4) has two separate sets of fixed points. The

first set contains all couples of identical measures from M+
1,ac(Ω).

Indeed, if µ = ν, then ΘN =const for all N and µN(E) = µ(E) =

νN(E) = ν(E) for each E ∈ B. The second set is composed from

measures µ, ν ∈M+
1,ac(Ω) which are orthogonal, µ ⊥ ν. In this case

τN = 0 = WN and ΘN + 1 = zN for all N . Due to (4) we find that

µN = µ, νN = ν.

In all other cases, when the starting measures are different, µ 6= ν,

and mutually non-singular the following theorem is true.
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Theorem Let {Ω,M+
1,ac(Ω), ?} be a DSC generated by the sys-

tem of difference equations (4). Then each its trajectory (3) starting

with a couple of probability measures µ0 = µ, ν0 = ν ∈ M+
1,ac(Ω),

µ 6= ν converges to the fixed point corresponding to the limit state

{µ∞, ν∞} with

µ∞(E) = lim
N→∞µN(E), ν∞(E) = lim

N→∞ νN(E), E ∈ B, (6)

where

µ∞(E) =
µ(E+)− ν(E+)

D
= µ+(E), (7)

ν∞(E) = −µ(E−)− ν(E−)

D
= ν−(E)

with µ+, ν− defined as the Hahn normalized components of ω =

µ− ν.

In (7) D = 1/2
∫
Ω |ρ(x) − σ(x)|dx stands for the total difference

between measures µ, ν.
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