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Hilbert’s Sixteenth Problem

Problem. To find the maximum number and to
determine the relative position of limit cycles of the
equation

dy

dx
=
Qn(x, y)

Pn(x, y)
(∗)

or of the corresponding dynamical system

ẋ = Pn(x, y), ẏ = Qn(x, y), (∗∗)

where Pn and Qn are polynomials with real coef-
ficients in real variables x, y and not greater than
n degree.



Principal Bifurcations of Limit Cycles

• Andronov–Hopf bifurcation
from a singular point of center or focus type
(Fig. 1)

• Separatrix cycle bifurcation
from a singular closed trajectory
(Fig. 2)

•Multiple limit cycle bifurcation
from a multiple limit cycle
(Fig. 3)



Principal Bifurcations

Figure 1. Andronov–Hopf bifurcation

Figure 2. Separatrix cycle bifurcation

Figure 3. Multiple limit cycle bifurcation



Local Results

•N. N. Bautin (1952): Ho(2) = 3
H. Żo la̧dek (1995): Ho(3) ≥ 11

• F. Dumortier, R. Roussarie,
C. Rousseau (1994):
classification and cyclicity
of quadratic separatrix cycles

• L. M. Perko (1995):
bifurcations of multiple limit cycles



Global Results

• Shi Sonling (1979);
Chen Lansun, Wang Mingshu (1979):
H(2) ≥ 4 and (3 : 1) - distribution

• R. Bamón (1986):
H(2) < +∞

• Yu. S. Il’yashenko (1987);
J. Écalle, J. Martinet, R. Moussu,
J.-P. Ramis (1987):
H(n) < +∞



Fundamental Ideas

•N. P. Erugin (1950):
qualitative investigation on the whole

• G. F. D. Duff (1953):
field rotation parameters

• A. Wintner (1931);
L. M. Perko (1990):
termination principle of multiple limit cycles



Quadratic Canonical Systems

Theorem. Any quadratic system with limit cycles
can be reduced to one of the canonical forms :

ẋ = −y (1 + x + α y),

ẏ = x + (λ + β + γ) y + a x2

+(α + β + γ)xy + c γ y2
(C1)

or
ẋ = −y (1 + ν y), ν = 0; 1,

ẏ = x + (λ + β + γ) y + a x2

+(β + γ)xy + c γ y2.

(C2)

Another pair of canonical forms:

ẋ = −y (1 + x) + αQ(x, y),

ẏ = x + λ y + a x2 + β y (1 + x) + c y2

≡ Q(x, y)

(C3)

or

ẋ = −y + ν y2, ẏ = Q(x, y), ν = 0; 1. (C4)



An Example of at Least Four Limit Cycles

A quadratic canonical system with two field rotation
parameters:

ẋ = P (x, y) + αQ(x, y),

ẏ = Q(x, y)− αP (x, y),
(C5)

where

P (x, y) = −y + b11 xy + (b02 − γ) y2,
Q(x, y) = x− x2 + γ xy + a02y

2.

Example. b202 − 4(b11 − 1)a02 < 0, b02 > 0,

g03 > 0, g5 < 0

for a02 = 10, b11 = 14, b02 = 3, α = 10−6,
where g3, g5 are respectively the first and second
focus quantities of the focus O(0, 0) of system (C5)
for α = 0; γ = 0 : g03 = g3(0).

Theorem. A quadratic systems has at least four
limit cycles in (3 : 1) - distribution.



Four Limit Cycles

Figure 10. Function of limit cycles

Figure 11. Four limit cycles



Classification of Separatrix Cycles

The classification is carried out in the systems (C3)
and (C4) according to the number and character of
finite singularities:

• one saddle and three antisaddles

• three saddles and one antisaddle

• two saddles and two antisaddles

• one simple saddle and one antisaddle

• two simple antisaddles

• degenerate cases

Control of singular points at infinity is carried out
with the help of a bundle of cubic curves

f (u) = −αcu3− (αβ− (c+1))u2− (αa−β)u+a,
u = y/x.

It is used the corresponding cases of a center in the
origin with x-axial symmetry of the vector field (when
α = β = λ = 0) and successive variation of the
parameters λ, β, and α.



Infinite Singularities

Figure 12. Bundles of cubic curves for infinite singularities



Classification of Separatrix Cycles
(Continuation)

Figure 13. Carrying out the separatrix cycle classification

in the case when 0 < a < 1, c < −1, λ > 0, β < 0, α = 0



Classification (Continuation)

Figure 14. The case: 0 < a < 1, c < −1, λ > 0, β < 0, α > 0



Classification (Continuation)

Figure 15. The case: 0 < a < 1, c < −1, λ > 0, β ≥ 0, α < 0



Loops

Figure 16. Loops



Digons

Figure 17. Digons



Triangles

Figure 18. Triangles



Poincaré Hemi-Cycles

Figure 19. Poincaré hemi-cycles



Multiple Limit Cycles

A two-dimensional n-parameter polynomial system:

ẋ = f (x,µ), (M)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (polynomial).

Figure 20. Poincaré return map

• Lo : x = ϕo(t) is a limit cycle at µ = µo ∈ Rn

• h(s,µ) is the Poincaré map, where

l is the normal to Lo at po = ϕo(0);
s is the coordinate along l

• d(s,µ) = h(s,µ)−s is the displacement function

Definition. A limit cycle Lo of the system (M) is
a limit cycle of multiplicity m iff

d(0,µo) = ds(0,µo) = . . . = d
(m−1)
s (0,µo) = 0,

d
(m)
s (0,µo) 6= 0.



Derivatives of Displacement Function

First partial derivatives along the limit cycle ϕo(t) :

ds(0,µo) = exp

∫ To

0
∇ · f (ϕo(t),µo) dt− 1;

dµj(0,µo) =
−ωo

‖f (ϕo(0),µo)‖

×
∫ To

0
exp

(
−
∫ t

0
∇ · f (ϕo(τ ),µo) dτ

)
×f ∧ fµj(ϕo(t),µo) dt,

where j = 1, . . . , n; ωo = ±1 according to whether
Lo is positively or negatively oriented, respectively;
and the wedge product of two vectors x = (x1, x2)
and y = (y1, y2) in R2 is defined as

x ∧ y = x1 y2 − x2 y1.

Remark. Similar formulas for dss(0,µo) and
dsµj(0,µo) can be derived in terms of integrals of
the vector field f and its first and second partial
derivatives along ϕo(t).



Fold

Figure 21. Fold bifurcation surface



Cusp

Figure 22. Cusp bifurcation surface



Swallow-Tail

Figure 23. Swallow-tail bifurcation surface



A Curve of Multiple Limit Cycles

Figure 24. A curve (one-parameter family)
of multiple limit cycles

Remark. For the case when n = m (i. e., when the
number of parameters is equal to the multiplicity of
limit cycles) we obtain a local curve (one-parameter
family) of multiplicity-m limit cycles of (M)
(n ≥ m ≥ 2).



Wintner – Perko Termination Principle

Theorem (Wintner – Perko). Any one-parameter
family of multiplicity-m limit cycles of the relatively
prime polynomial system (M) can be extended in a
unique way to a maximal one-parameter family of
multiplicity-m limit cycles of (M) which is either
open or cyclic.

If it is open, then it terminates either as the parameter
or the limit cycles become unbounded; or, the family
terminates either at a singular point of (M), which
is typically a fine focus of multiplicity m, or on a
(compound ) separatrix cycle of (M), which is also
typically of multiplicity m.



Monotonic Families of Limit Cycles

Theorem (Perko). If Lo is a multiple limit cycle
of (Mo) and µ ∈ R is a field rotation parameter of
(M), then Lo belongs to a one-parameter family of
limit cycles of (M); furthermore :

1) if the multiplicity of Lo is odd, then the family
either expands or contracts monotonically as µ
increases through µo;

2) if the multiplicity of Lo is even, then Lo bifurcates
into a stable and an unstable limit cycle as µ varies
from µo in one sense and Lo disappears as µ varies
from µo in the opposite sense; i. e., there is a fold
bifurcation at µo.



Main Results for Quadratic Systems

Theorem. There exists no quadratic system having
a swallow-tail bifurcation surface of multiplicity-four
limit cycles in its parameter space. In other words, a
quadratic system cannot have neither a multiplicity-
four limit cycle nor four limit cycles around a singular
point (focus), and the maximum multiplicity or the
maximum number of limit cycles surrounding a focus
is equal to three.

Theorem (Quadratic Hilbert’s 16th Problem).
The maximum number of limit cycles in a quadratic
system is equal to four and their only possible distri-
bution is (3 : 1).



FitzHugh – Nagumo Neuronal Model

The FitzHugh – Nagumo model:

V̇ = I −W − aV + (a + 1)V 2 − V 3,

Ẇ = ε(V − δ W ), (FN)

where V is the membrane potential, W is a recovery
variable, and I is the magnitude of stimulus current,
is a two-dimensional simplification of the classical
Hodgkin – Huxley model of the spike dynamics in a
biological neuron.

This system can be reduced to the canonical form

ẋ = (γδ − 1) y + (γ − a)x + b x2 − c x3,
ẏ = x− δ y. (Mc)

Theorem. FitzHugh – Nagumo system (Mc) has
at most two limit cycles.



Planar Neural Networks

For two input neurons, the learning model of neural
networks can be written as a system of two cubic
differential equations

ẋ = ((1−ε)a+(ε/2)b)x+((1−ε)b+(ε/2)c)y

−x(ax2+2bxy+cy2),

ẏ = ((ε/2)a+(1−ε)b)x+((ε/2)b+(1−ε)c)y
−y(ax2+2bxy+cy2),

where the parameters ε and a, b, c represent the
probability of synaptic formation and the weight
strengths for the synapses attached to the input
neurons, respectively (the Oja model).

This system can be reduced to the canonical form

ẋ = λx− y − x(ax2 + 2bxy + cy2),

ẏ = x + λ y − y(ax2 + 2bxy + cy2). (Nc)

Theorem. System (Nc) has at most one limit cycle.



Quartic Biomedical and Ecological Model

A quartic predator-prey model:

ẋ = x

(
1− λx− y

αx2 + βx + 1

)
(prey),

ẏ = y

(
−δ − µy + x

αx2 + βx + 1

)
(predator),

where α ≥ 0, δ > 0, λ > 0, µ ≥ 0 and β > −2
√
α

are parameters.

This is a variation on the classical Lotka–Volterra
system which can be written in the form

ẋ = x((1− λx)(αx2 + βx + 1)− y) ≡ P,

ẏ = −y((δ + µy)(αx2 + βx + 1)− x) ≡ Q.
(Q)

We use also an auxiliary system

ẋ = P − γQ, ẏ = Q + γP, (Qγ)

where γ is a field rotation parameter.

Theorem. System (Q) has at most two limit cycles.



Classical Liénard Polynomial System

The classical Liénard polynomial system:

ẋ = y,

ẏ = −x + µ1 y + µ2 y
2 + µ3 y

3 + . . .

+ µ2k y
2k + µ2k+1 y

2k+1

(L)

Theorem. System (L) with limit cycles can be
reduced to the canonical form

ẋ = y,

ẏ = −x + µ1 y + y2 + µ3 y
3 + . . .

+ y2k + µ2k+1 y
2k+1,

(Lc)

where µ1, . . . , µ2k+1 are field rotation parameters.

Theorem (Smale’s 13th Problem). Liénard poly-
nomial system (L) has at most k limit cycles.



Arbitrary Polynomial System

An arbitrary polynomial system:

ẋ = Pn(x, y, µ1, . . . , µk),

ẏ = Qn(x, y, µ1, . . . , µk),
(P )

where Pn and Qn are polynomials in the real variables
x, y and not greater than n degree containing k field
rotation parameters, µ1, . . . , µk, and having an anti-
saddle at the origin.

Theorem. Polynomial system (P ) containing k field
rotation parameters and having a singular point of
the center type at the origin for the zero values of
these parameters can have at most k− 1 limit cycles
surrounding the origin.



Piecewise Linear Dynamical Systems

A Liénard-type dynamical system:

ẋ = y − ϕ(x), ẏ = β − αx− y,
α > 0, β > 0,

(PL)

where ϕ(x) is a piecewise linear function containing
k dropping sections and approximating some conti-
nuous nonlinear function.

Suppose that the ascending sections of (PL) have
an inclination k1 > 0 and the descending (dropping)
sections have an inclination k2 < 0. Then the phase
plane of (PL) can be divided onto 2k + 1 parts in
every of which (PL) is a linear system: the ascending
sections are in k+1 strip regions (I, III, . . . , 2K+1)
and the descending sections are in other k such re-
gions (II, IV, . . . , 2K). The parameters k1, k2, and
also α can be considered as rotation parameters for
the sewed vector field of (PL).

Theorem. System (PL) with k dropping sections
and 2k + 1 singular points can have at most k + 2
limit cycles, k + 1 of which surround the foci one by
one and the last, (k+ 2)-th, limit cycle surrounds all
of the singular points of (PL).



A Strange Attractor

Figure 25. Bifurcation of a strange attractor
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