
National Academy of Sciences of Ukraine

Institute of Mathematics

International Conference

DYNAMICAL SYSTEMS

AND

THEIR APPLICATIONS

Kyiv, Ukraine

June 22 – 26, 2015

Abstracts

Kyiv – 2015



DYNAMICAL SYSTEMS

AND

THEIR APPLICATIONS

Kyiv, Ukraine

June 22 – 26, 2015

International Conference on Dynamical Systems and Their Appli-
cations is organized by the Institute of Mathematics, National Acad-
emy of Sciences of Ukraine.

Dynamical systems theory, being one of the rapidly developing ar-
eas of modern mathematics, provides powerful theoretical base for
exploring a variety of models that arise in natural and social sciences,
engineering and technology. The combination of the internal wealth
and beauty of results with the exceptional practical importance moti-
vates a growing number of specialists to study into dynamical systems.

Beginning with the 60s, the Institute of Mathematics held con-
ferences and schools on various fields of mathematics, in particular,
on dynamical systems. This has had a profound effect on the devel-
opment not only of dynamical systems theory but also of the overall
nonlinear dynamics. Not so long, the Institute of Mathematics de-
cided to arrange International Conference “Dynamical Systems and
Their Applications” (ICDSA), aimed to promote transnational coop-
eration and share good practice in the field of dynamical systems
theory. The first conference hosted in Kyiv in 2012. The second edi-
tion of ICDSA takes place in Kyiv again, it considers a wide range of
issues of the modern theory of dynamical systems.



Organizing Committee

Institute of Mathematics
National Academy of Sciences of Ukraine

A. A. Akbergenov
O. M. Baranovsky
B. G. Feshchenko
S. I. Maksymenko (Chair)
O. V. Marunkevych
A. A. Panchuk
O. V. Rybak
A. G. Sivak
N. A. Vasilenko



Contents

Plenary Speakers 6

Francisco Balibrea. Dynamics of the Thue-Morse System of Difference Equations 7

Valery Gaiko. On Limit Cycle Bifurcations 8

Rostyslav Grigorchuk. Absolutely Non Free Actions, Random Subgroups, and
Factor Representations 9

Yulij Ilyashenko. Towards the Global Bifurcation Theory on the Plane 10

Sergey Kaschenko. Regular and Chaotic Oscillations in Singularly Perturbed
Systems with Delay 11

Anatole Katok. On Flexibility of Entropies and Lyapunov Exponents 12

Mykola Pratsiovytyi. Topologically-Metrical and Fractal Analysis of Local
Structure of Continuous Functions 13

Oleksandr Sharkovsky. ω-Attractors and Their Basins 14

Andrii Sivak. σ-Attractors, µ-Attractors, and Their Basins 15

Grygorii M. Torbin. Fractals, Singular Probability Measures, and Dynamical Systems 16

Igor Vlasenko. New Invariants of Topological Conjugacy of Non-Invertible
Inner Mappings 17

Abdyvali Akbergenov. On a Class of Differential-Functional Equations 18
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Plenary Speakers

Francisco Balibrea (Spain)
“Dynamics of the Thue-Morse system of difference equations”

Valery Gaiko (Belarus)
“On limit cycle bifurcations”

Rostislav Grigorchuk (USA)
“Absolutely non free actions, random subgroups, and factor
representations”

Yulij Ilyashenko (Russia)
“Towards the global bifurcation theory on the plane”

Anatole Katok (USA)
“On Flexibility of Entropies and Lyapunov Exponents”

Sergey Kaschenko (Russia)
“Regular and chaotic oscillations in singularly perturbed systems
with delay”

Mykola Pratsiovytyi (Ukraine)
“Topologically-metrical and fractal analysis of local structure of
continuous functions”

Oleksandr Sharkovsky (Ukraine)
“ω-Attractors and their basins”

Andrii Sivak (Ukraine)
“σ-Attractors, µ-attractors, and their basins”

Grygorii Torbin (Ukraine)
“Fractals, singular probability measures and dynamical systems”

Igor Vlasenko (Ukraine)
“New invariants of topological conjugacy of non-invertible
inner mappings”
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dynamics of the thue-morse system of
difference equations

francisco balibrea
Departamento de Matemticas, University of Murcia, 30100 Murcia, Spain

e-mail: balibrea@um.es

The Thue–Morse system of difference equations was introduced in [1] as a model to un-
derstand the electric behavior (conductor or insulator) of an array of electrical punctual
positive charges occupying positions following a one dimensional distribution of points called
a Thue–Morse chain which it is connected to the sequence t = (0110100110010 . . .) called
also the Thue–Morse sequence. Unfolding the system of difference equations, we obtain the
two-dimensional dynamical system in the plane given by

F (x, y) = (x(4− x− y), xy).

The interest of such system was stated by A. Sharkovsk̆ıi as an open problem and proposing
some questions.

The most interesting dynamics of the system is developed inside an invariant plane tri-
angle, where hyperbolic periodic points of almost all period appear, there are subsets of
transitivity and invariant curves of spiral form around the unique inside fixed point.

In this talk we will present some results concerning the behavior of all points outside
the triangle, completing the known dynamics of the system. In fact we have obtained that
outside the triangle, the orbits of all points are unbounded. Some of them go to infinite in an
oscillating way occupying the second and third quadrant of the plane and others are going
in a monotone way to infinite. Outside the triangle there are no periodic points. Such new
results has an interesting interpretation in terms of the physics of the problem. Additionally
we will answer some of the questions stated by Sharkovsk̆ıi concerning the inside of the
mentioned triangle.

We will also present graphycal analysis of such evolutions and also the visualization of
the dynamics of the system inside the triangle.

Additionally we will present results on another system associated to Fibonacci sequence
whose unfolding in R3 is

F (x, y, z) = (y, z, yx− z).

[1] Y.Avishai and D.Berend, Transmission through a Thue–Morse chain, Physical Review B
45(6) (2011), 2717–2724.
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on limit cycle bifurcations

valery gaiko
United Institute of Informatics Problems

National Academy of Sciences of Belarus, Minsk, Belarus
e-mail: valery.gaiko@gmail.com

We carry out the qualitative analysis of polynomial dynamical systems. To control all of
their limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary
to know the properties and combine the effects of all of their rotation parameters. It can be
done by means of the development of new bifurcational and topological methods based on
the well-known Weierstrass preparation theorem and the Perko planar termination principle
stating that the maximal one-parameter family of multiple limit cycles terminates either at
a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle
which is also typically of the same multiplicity (cyclicity) [1].

If we do not know the cyclicity of the termination points, then, applying canonical sys-
tems with field rotation parameters, we use geometric properties of the spirals filling the
interior and exterior domains of limit cycles. Using this method, we have solved, e. g., the
problem of the maximum number of limit cycles surrounding a singular point for an arbitrary
polynomial system and Hilbert’s Sixteenth Problem for a general Liénard polynomial system
with an arbitrary (but finite) number of singular points [2]. Applying a similar approach, we
have completed the strange attractor bifurcation scenario which connects globally the homo-
clinic, period-doubling, Andronov–Shilnikov, and period-halving bifurcations in the classical
Lorenz system [3]. We discuss also how to apply this approach for studying global limit
cycle bifurcations of discrete polynomial (and rational) dynamical systems which model the
population dynamics in biomedical and ecological systems.

This work was partially supported by the Simons Foundation of the International Mathe-
matical Union and the Department of Mathematics and Statistics of the Missouri University
of Science and Technology.

[1] V.A.Gaiko, Global Bifurcation Theory and Hilbert’s Sixteenth Problem. Kluwer, Boston
(2003).

[2] V.A.Gaiko, The applied geometry of a general Liénard polynomial system. Appl. Math.
Letters 25 (2012), 2327–2331.

[3] V.A.Gaiko, Global bifurcation analysis of the Lorenz system. J. Nonlinear Sci. Appl. 7
(2014), 429–434.
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absolutely non free actions, random subgroups,
and factor representations

rostyslav grigorchuk
Mathematics Department, Texas A&M University, USA

e-mail: grigorch@math.tamu.edu

I will present results of several investigations, performed in collaboration with M. Benli,
L. Bowen, A. Dudko, R. Kravchenko and T. Nagnibeda. These results deal with invariant
and characteristic random subgroups in some groups of geometric origin, including hyperbolic
groups, mapping class groups, groups of intermediate growth and branch groups. During
the talk the role of totally non free actions will be explained. This will be used to explain
why branch groups have infinitely many factor representations of type II1.
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towards the global bifurcation theory
on the plane

yulij ilyashenko
Moscow Independent University, Moscow, Russia

e-mail: yulijs@gmail.com

Local bifurcation theory (in what follows we will talk about the plane only) is related to
transfigurations of phase portraits of differential equations. Currently this theory is almost
completed. Nonlocal theory is related to bifurcations of separatrix polygons (polycycles).
Though in the last 30 years there were obtained many new results, this theory is far from
being completed. Recently it was discovered that nonlocal theory contains another substan-
tial part: a global theory. New phenomena are related with appearance of the so called
sparkling saddle connections. The aim of the talk is to explain first results of the new theory
and discuss numerous open problems.
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regular and chaotic oscillations in singularly
perturbed systems with delay

sergey kaschenko
P.G.Demidov Yaroslavl State University, Yaroslavl, Russia

e-mail: kasch@uniyar.ac.ru

The article offers special research methods for investigating both local and nonlocal dy-
namics of wide range singularly perturbed systems with delay. When studying local be-
haviour of solutions it appeared to be characteristic a realization of critical cases of the
problem regarding station stability of infinite dimensions. Available methods of invariant
integral manifolds and methods of normal forms tend to be not applicable.

The author has developed a special method of quasinormal forms based on arranging
special series of nonlinear evolutionary equations which do not contain small or big param-
eters, and nonlocal dynamics of which describes local behaviour of solutions for an original
system with delay.

An efficient method implying reduction to finite-dimensional mapping is proposed to
investigate nonlocal dynamics of singularly perturbed systems with delay. The dynamics of
the latter describes the structure of original system attractors. The result is asymptomics
of both regular and irregular relaxation oscillations. Applications have been considered.
A number of conclusions have been made on dynamic features specific exclusively for systems
with delay.
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on flexibility of entropies and lyapunov exponents

anatole katok
Pennsylvania State University, USA

e-mail: katok_a@math.psu.edu

Dedicated to the memory of Dmitry Viktorovich Anosov and Nikolai Chernov

Principal stochastic properties of conservative dynamical systems come in two varieties:
(i) asymptotic distribution of orbits, that includes ergodicity, various kinds of mixing prop-
erties, decay of correlations and so on, and (ii) global measures of complexity and speed of
divergence, i.e. measure theoretic (Kolmogorov) entropy, topological entropy, as well as Lya-
punov exponents with respect to the absolutely continuous invariant measures and measures
of maximal entropy. Classical work of Anosov from 1960s and more recent work of Chernov
are among the inspirations of the program I will outline on this talk.

Another motivation for the program comes form various recent results concerning smooth
actions of higher-rank abelian groups as well as the older Zimmer program concerning ac-
tions of “large” non-abelian groups. Among rigidity phenomena established for those actions
are strong restrictions of arithmetic nature on the values of Lyapunov exponents for pos-
itive entropy invariant measures as well as on values of topological and measure-theoretic
entropies.

On the other hand, for classical rank one systems„ i.e diffeomorphisms and flows, one
does not expect any restrictions of similar nature. Surprisingly though this is easier said than
done. There is a variety of local results coming from various constructions of Anosov and
non-uniformly hyperbolic systems but already such a simply sounding question as character-
izing all possible triples of positive numbers that appear as Lyapunov exponents of volume-
preserving Anosov diffeomorphisms (w.r. to the volume measure) on the three-dimensional
torus seems to require some serious new ideas beyond combination of known methods.

So far, non-trivial progress was made in a joint work with Alena Erchenko in the char-
acterization of pairs of numbers that appear as values of topological and measure-theoretic
(Liouville) entropies for the geodesic flow on a surface of genus greater than one with a Rie-
mannian metric of a fixed total area.
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topologically-metrical and fractal analysis of
local structure of continuous functions

mykola pratsiovytyi
National Pedagogical Dragomanov University, Kyiv, Ukraine

e-mail: prats4@yandex.ru

Now fractal properties of functions are studied in various directions. In particular,
(1) properties of level sets of function and sets of its peculiarities;
(2) property of function to preserve or transform fractal dimension, frequencies of digits,

mean value of digits, etc.;
(3) self-similar, self-affine and auto-modeling properties of functions and their graphs;
(4) properties of dynamics generated by functions with fractal properties;
(5) construction of functions with given fractal properties;
(6) development of suitable and effective tools for definition and investigation of functions

with complicated local structure (using various systems of encoding of real numbers
with finite, infinite, constant and variable alphabet); by means of systems of functional
equations and iterated functions.

In the talk, we study some finite- and infinite-parameter families of functions in above-
mentioned directions.

We consider classic binary representation of real numbers:

[0; 1) 3 x =
∞∑
n=1

αn2−n ≡ ∆2
α1α2 . . . αn . . .

,

where αn ∈ A2 ≡ {0, 1} is an alphabet of binary numeral system, as well as its reencoding
by means of infinite alphabet A = Z0 = {0, 1, 2 . . .}:

∆
2

a1a2 . . . an . . .
≡ ∆2

1 . . . 1︸ ︷︷ ︸
a1

0 1 . . . 1︸ ︷︷ ︸
a2

0 . . . 1 . . . 1︸ ︷︷ ︸
an

0 . . . = ∆2
α1α2 . . . αn . . .

, an ∈ A.

The last is called ∆
2-representation. It has extra-zero redundancy, i.e., every number has

a unique ∆
2-representation.

We describe fractal properties of dynamical system with phase space [0, 1] ⊂ R1 and
mapping

f(x) = f(∆
2

a1(x)a2(x) . . . an(x) . . . ) = ∆
2

ϕ(a1,a2)ϕ(a2,a3) . . . ϕ(an−1,an)ϕ(an,an+1) . . . ,

where ϕ is a function of two variables defined on Z0 × Z0 and taking the values from the
alphabet Z0. The simplest examples are ϕ(a1, a2) = a1a2 or ϕ(a1, a2) = a1 + a2.

13
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ω-attractors and their basins

oleksandr sharkovsky
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

e-mail: asharkov@imath.kiev.ua

Dynamical systems on a compact space X generated by a continuous map f : X → X
are considered. The asymptotic behavior of every trajectory f i(x), i = 0, 1, 2, ..., is usually
characterized by its ω-limit set Ax =

⋂
m>0 {

⋃
i>m f

i(x)}. Each of the sets Ax, x ∈ X,
can be an ω-limit set for many other trajectories. It therefore makes sense to refer to each
set, which is an ω-limit set at least for one trajectory, as an ω-attractor. As is well known,
if a dynamical system has so-called Smale’s horseshoe, then it has a lot of ω-attractors.
In particular, if X is an interval I and the map f has a cycle of period 6= 2k, k ≥ 0, then,
for certain m > 0, the map fm has a one-dimensional horseshoe (or Λ-scheme). Namely,
there are two disjoint intervals J1, J2 such that fm(J1), fm(J2) ⊃ J1 ∪ J2, and, as a conse-
quence, the dynamical system has continuum many different ω-attractors. The talk deals
with the properties of the dynamical system on an ω-attractor and properties of the set of
all ω-attractors of the dynamical system considered as a set in the space 2X of all closed
subsets of X endowed with the Hausdorff metric.

The set of trajectories, which are attracted by an ω-attractor, is called the basin of
the ω-attractor: If A is an ω-attractor, then B(A) = {x ∈ X | A(x) = A} is a basin of this
ω-attractor. In the talk, we discuss the structure of the basins of ω-attractors, as well as some
unresolved problems. It is known that B(A) is always an Fσδ-set, i.e., it is represented in the
form

⋂
k

⋃
j Fjk with Fjk being closed sets, but this upper estimate of the basin complexity

is achieved even in the case X = I, and B(A) is a set of the third Baire class in this case.
Most of the results presented in the talk has been obtained in the 60s of the last century,

but are not widely known until now yet.

14
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σ-attractors, µ-attractors, and their basins

andrii sivak
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

e-mail: sivak@imath.kiev.ua

If we have to account the statistical behavior of the trajectory of a point x, we consider
its σ-limit set Aσx, so called “statistically limit set” of the trajectory, i.e., the smallest closed
set such that lim

N→∞
1
N

∑N−1
i=0 χ

U
(f i(x)) = 1. It is the smallest closed set satisfying the property

that any neighborhood of this set contains almost all points of the trajectory. As a rule,
there are a lot of trajectories that have the same σ-limit set, so we consider the structure of
the set of all points that have the same σ-limit set. This set is the basin of the corresponding
attractor.

If a σ-attractor is not just one periodic trajectory, then trajectories of the dynamical sys-
tem on such an attractor can generate many (several, finitely many, or continuum) different
invariant measures, even if the attractor consists of only two fixed points. For a probability
measure µ, which is defined on Borel subsets of a compact space X and invariant with re-
spect to a continuous map f :X→X, we consider the set B(µ) =

{
x∈X : Cnϕ(x) →

∫
ϕdµ

for all ϕ ∈ C(X)
}
, where Cnϕ(x) = 1

n

∑n−1
i=0 ϕ(f i(x)) are Cesaro means for the trajectory

of x and C(X) is the space of continuous functions on X. It is the set of trajectories that
generate the measure µ because B(µ) can be defined as the set of points x such that Cnδx,
where δx is the probability measure concentrated at x, converges weakly to µ. Also, along
with B(µ), we consider the set D(µ) that consists of the points x, for which µ belongs to the
set of limit points of the sequence Cnδx.

In the theory of dynamical systems, along with open and closed invariant sets, there
appear also Fσ sets (e.g., the set of all periodic points), Gδ sets (e.g., the set of all orbitally
stable points), Fσδ sets, etc. Sometimes, instead of this Hausdorff classification, the Bair
(Lusin–de la Valée Poussin) classification is used. In this classification, the first class includes
all sets which are both Fσ and Gδ; the second class consists of the sets which are either Fσ
or Gδ but not both and of sets which are Fσδ and Gδσ at the same time but do not belong to
the first class; etc. Usually upper descriptive estimates for dynamical systems are obtained
easily. It is much harder to prove that these upper estimates can be reached. In our talk,
we will give descr0iptive estimates for basins of attractors commonly used in the theory of
dynamical systems and formulate some proven results and hypothesis on the exactness of
the stated estimates.
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fractals, singular probability measures, and
dynamical systems

grygorii torbin
National Pedagogical Dragomanov University, Kyiv, Ukraine

e-mail: torbin@npu.edu.ua

It is well known now that fractal analysis plays an important role in the study of chaotic
dynamical systems and singular probability distributions [4]. Rather often fractals appear as
attractors resp. repellers of corresponding dynamics or spectra resp. minimal dimensional
supports of singular measures. On the other hand methods of dynamical systems are pointed
out to be extremely useful to study fine fractal properties of sets as well as probability
measures supported by fractals [1, 4, 5].

During the talk we shall discuss several new phenomena related to interplays of the theory
of transformations preserving the Hausdorff dimension [3], faithfulness resp. non-faithfulness
of fibred systems [2, 5], infinite IFS and fine fractal properties of singular probability distri-
butions [1, 2].

[1] S. Albeverio, Yu. Kondratiev, R. Nikiforov, G. Torbin, On fractal properties of non-
normal numbers with respect to Rényi f -expansions generated by piecewise linear func-
tions. Bull. Sci. Math. 138 (2014), no. 3, 440 – 455.

[2] S. Albeverio, Yu. Kondratiev, R. Nikiforov, G. Torbin, On new fractal phenomena con-
nected with infinite linear IFS. submitted to Acta Mathematica, 2015.

[3] S. Albeverio, M. Pratsiovytyi, G. Torbin, Fractal probability distributions and transfor-
mations preserving the Hausdorff-Besicovitch dimension. Ergodic Theory and Dynamical
Systems, 24 (2004), no.1, 1–16.

[4] Y. Pesin, Dimension theory in dynamical systems. Contemporary views and applications.
Chicago Lectures in Mathematics. University of Chicago Press, Chicago, (1997).

[5] F. Schweiger, Ergodic theory of fibred systems and metric number theory. Oxford Univer-
sity Press, New York, (1995).
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new invariants of topological conjugacy of
non-invertible inner mappings

igor vlasenko
Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine

e-mail: vlasenko@imath.kiev.ua

Let f : X → X be an inner surjective map of a locally compact locally connected metric
space X. Recall that an inner map is an open and isolated map. A map is open if the image
of an open set is open. A map is isolated if the pre-image of a point consists of isolated
points.

The book [1] and some earlier papers introduced a set of new invariants of topological
conjugacy of non-invertible inner mappings that are modeled from the invariant sets of
dynamical systems generated by homeomorphisms. Those new invariants are based on the
analogy between the trajectories of a homeomorphism and the directions in the set of points
having common image which is viewed as having 2 dimensions.

In particular, this papers introduced the sets of neutrally recurrent and the neutrally
non-wandering points related to the dynamics of points and neighborhoods in that “extra”
dimension. Those invariants provide a natural language for the topological classification of
many classes of polynomial maps and also allow to define analogs of many well known classes
of invertible maps such as Smale diffeomorphisms for the non-invertible inner maps.

[1] I. Yu. Vlasenko, Inner mappings: topological invariants and their applications. Inst. of
Math, Kiev (2014).
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on a class of differential-functional equations

abdyvali akbergenov
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

e-mail: Abdivali.Akbergenov@gmail.com

We consider differential-functional equations with the deviation of argument depending
on the unknown function, namely, the equations:

x′(f(x(t))) = G(x(t), x(f(x(t)) ), (1)

where t ∈ R, f : R→ R, G : R× R→ R. Differential-functional equation (1) is completely
integrable and is reduced to one parameter family of functional equations

x(f(x(t))) = g(x(t), α) (2)

where α is an arbitrary constant. Equations (2) are iterative functional equations and it’s
investigation can be reduced to studying the so-called characteristic map

S :

{
t 7→ f(x),
x 7→ g(x, α)

(3)

generated by (2). This allows to construct general solution for such equations, [1]–[4].
We investigate properties of the equation (1) in dependence on parameters and initial

conditions.

[1] M.Kuczma, Functional equations in a single variable, Warszawa, 1968.

[2] M.Kuczma, B.Choczewski, R.Ger, Iterative functional equations, Cambridge Univer.
Press, 1990.

[3] G. P. Pelyukh and A.N. Sharkovsky, Method of invariants in theory of functional equa-
tions, Proceedings of Inst. Math., National Acad. Sci. of Ukraine, vol. 95, Kiev, 2013
[in Russian].

[4] A.N. Sharkovsky, On functional and functional-differential equations with the deviation
of the argument depending on the unknown function, Functional and functional-difference
equations, Inst. Math., Acad. Sci. Ukrain. SSR, Kiev, 1974, pp. 148–155 [in Russian].
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the cost of approximate controllability and
a unique continuation result at initial time

for the ginzburg-landau equation

bianca-elena aramă
“Alexandru Ioan Cuza” University, Iaşi, Romania

e-mail: bianca.gavrilei@yahoo.com

We consider the controlled Ginzburg-Landau equation with an internal distributed con-
trol in a sub-domain. The complex Ginzburg-Landau equation describes the evolution of
a complex-valued field y = y(x, t) by

∂ty − (a+ ib)∆y = Ry − (α + iβ) |y|2 y + χωu,

y = 0

y(x, 0) = y0(x)

where t > 0, x ∈ Ω ⊂ RN ,

on ∂Ω× (0, T ),

in Ω.

(1)

Here a, b, R, α and β are some positive real numbers.
The fundamental technique approached in this paper is estimating Carleman type in-

equalities for the adjoint linearized system. We renew the computations made by Rosier and
Zhang in [4], and obtain explicit coefficients in the Carleman estimates, with respect to T ,
where [0, T ] is the maximum interval of time we consider. We obtain explicit bounds of the
cost of approximate controllability, i.e., of the minimal norm of a control needed to control
the system approximately.

Given y0 ∈ L2(Ω), a final state y1 ∈ L2(Ω) and ε > 0, there exists a control u ∈
L2(ω × (0, T )) such that the solution of (1) satisfies

‖y(T )− y1‖L2(Ω) ≤ ε.

As in [3], the approximate control u of minimal norm in L2 (ω × (0, T )) corresponding
to y0 = 0, y1 ∈ L2 (Ω) and ε > 0 can be obtained by minimizing the convex functional J
in L2 (Ω):

J(pT ) = 1/2
∫∫

ω×(0,T )

|p|2 dxdt+ ε ‖pT‖L2 −
∫
Ω

y1pTdx.

We prove an unique continuation result at initial time, which relies on Carleman estimates
with explicit coefficients. In [1], the authors establish an unique continuation result at initial
time for a second-order parabolic operator P in [0, T ]×RN , P = ∂t+A.P = ∂t+A, where A
is a second-order elliptic operator. In [2], Lefter and Lorenzi force the local result in [1], to
a nonlocal one. The authors are interested when the unique continuation is global at initial
time, i.e., when y solves the homogeneous parabolic equation in L2 (0, T ;L2 (Ω)) and ω ⊂⊂ Ω
is an open subset, under which conditions on the behavior of ‖y‖L2(0,t;H1(ω)), when t −→ 0
one obtains that y (x, 0) = 0 for all x ∈ Ω.

We want to establish an unique continuation result at the initial time for the operator
P = ∂t − (a+ ib)∆.
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[1] P.Albano, D.Tătaru,Unique continuation for second-order parabolic operators at the ini-
tial time. Proc. Amer. Math. Soc. 132(4) (2004), 1077–1085.

[2] C.G. Lefter, A. Lorenzi, Approximate controllability for an integro-differential control
problem. Applicable Analysis (2008).

[3] J. L. Lions, Remarks on approximate controllability. J. Anal. Math. 59 (1992), 103–116.
[4] L.Rosier, B.Y. Zhang, Null controllability of the complex Ginzburg-Landau equation. An-

nales de L’Institut Henri Poincaré (2009).
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stabilization of systems with multiple
power nonlinearities

maxim bebiya
Kharkiv National University of V.N.Karazin, Kharkiv, Ukraine

e-mail: m.bebiya@karazin.ua

In this paper we solve the stabilization problem for a class of nonlinear systems with
uncontrollable first approximation. Namely, we consider a nonlinear system of the form{

ẋ1 = u,

ẋi = x
2ki−1+1
i−1 , i = 2, . . . , n

(1)

where ki ∈ N , u ∈ R is a control. The stabilization problem for system (1) is to construct
a control of the form u = u(x) such that equilibrium point of the closed-loop system is
asymptotically stable.

We assume that k1 = · · · = ks = 0 and 0 < ks+1 < . . . < kn−1 for some s such that
0 ≤ s ≤ n− 2. For s = n− 2 the stabilization problem for system (1) has been solved in [1].
The main result of the present work states that a stabilizing control can be found in the
form

u(x) = a1x1 + a2x2 + · · ·+ anxn +
n−1∑
i=s+1

an−s+ix
2ki+1
i . (2)

The conditions on coefficients ai are obtained with the help of the Lyapunov function method.
A Lyapunov function V (x) can be chosen in the following form V (x) = (Fx, x) where F is
a solution of a singular Lyapunov inequality.

[1] M. O. Bebiya, Stabilization of systems with power nonlinearity, Visn. Khark. Univ., Ser.
Math, Prykl. Mat. Mekh. 1120 (2014), 85–94.
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application of (c)-properties for cesaro summability
methods (C, 1) of ergodic theorem

mykola m. bilotskyi
National Pedagogical Dragomanov University, Kyiv, Ukraine

e-mail: mikbil@ukr.net, mykmykbil@gmail.com

Let the given sequence S = {Sn ∈ B : n ∈ N0}, where B is Banach space, N0 = N ∪{0}.
A closed convex set G ⊂ B is the (c)-set of sequences S = {Sn}, if ∀ε > 0 ∃δ (ε) > 0
∃ ([nk (ε) ;mk (ε)]) :

Sn ∈ Gε∀n ∈ [nk (ε) ;mk (ε)] ⊂ N∀k ∈ N, mk − nk
mk

≥ δ (ε) ,

where Gε is a closed convex ε-neighborhood of a closed convex set G ⊂ B.
For the case B = C of known methods Cesaro (C, α) , α ≥ 1, (c)-property:
If a ∃ limn→∞ Sn = L, (C, α) and closed convex set the G ⊂ C is (c)-set of sequences

S = {Sn} ⊂ C, while L ∈ G [1].
This property holds for the methods (C, 1) in the case of Banach spaces B.
Proposition. Let (B,Ω, µ)− the space of normalized measure and f ∈ L1 (B,Ω, µ).

Then for each there x ∈ Be ⊂ B, µ (B\Be) = 0 is a limit

lim
n→∞

1

n

n−1∑
k=0

f
(
T kx

)
= f̂ (x) [2, p.17− 22],

that is, limn→∞ f (T nx) = f̂ (x) (C, 1) , and
1. f̂ (x) ∈ Gx ∀x ∈ Be, for which there is (c)− a set Gx ⊂ (B,Ω, µ) sequence {f (T nx)};
2. limn→∞ f (T nx) = f̂ (x)∀x ∈ Be, in which each partial sequence boundary {f (T nx)}

is the (c)− point;
3. x ∈ B\Be, if for x ∈ B there are two different (c)− sets G1 and G2 sequences

{f (T nx)} such that G1 ⊂ (B,Ω, µ) , G2 ⊂ (B,Ω, µ), G1 ∩G2 = ∅.
The statement can be formulated for the case f (x) = χA (x), where χA (x)− the indicator

set A ⊂ B.

[1] Davydov N.A. One the methods of Cesaro summation series, Mat sat., 38 (80), 1956,
p. 509–524.

[2] Kornfeld I. P., Sinai I. D., Fomin N.B. Ergodic theory. M.: Science. Main editorial of
physico-mathematical literature, 1980.
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nonlinear dynamics of random laser generation
in 3d percolating clusters

gennadii burlak
Universidad Autónoma del Estado de Morelos, Cuernavaca, México

e-mail: gburlak@uaem.mx

In the artificial 3D percolation medium, the clusters filled by the nanoemitters give rise
to a topologically nontrivial photonic structure with no-integer fractal dimension. In such
a system, the laser model is strongly modified by the spatial percolating clusters’ distribu-
tion. We systematically study a random laser emission from such advanced 3D system with
radiated emitters randomly incorporated in the incipient spanning cluster. The nonlinear
time dynamics and spectra of the lasing output are studied numerically. To find the optimal
optical path for communications between the radiated emitters the Fermat principle was
applied with the use of the quantum Monte Carlo approach.
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chimera states in a network of oscillators
under cross-global coupling

syamal kumar dana
CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India

e-mail: syamaldana@gmail.com

Chimera states was surprisingly emerged in a symmetric network of identical oscillators,
when the whole population splits into two subpopulations, one coherent, another noncoher-
ent. It was first noticed [1] in phase oscillators for nonlocal coupling where the coupling has
a space variation, later in limit cycle system and chaotic system. Three different character-
istic features of chimera states were identified: spatio-temporal chaos [2], spatial chaos [3]
and a mixture of both [4] in the noncoherent population while the coherent population may
stay in periodic, chaotic state. It was also evidenced in physical experiments [5]. The strict
condition of nonlocal coupling in a network was relaxed recently; it was found to emerge for
linear or nonlinear global coupling [6, 7]. However, the chimera states has a characteristic
spatio-temporal chaos only in the noncoherent population.

We extend [8] the work here and report chimera states in a network of identical oscillators
(limit cycle and chaotic) where a linear repulsive cross-global coupling is added to the typical
attractive self-global coupling. We present examples of the van der Pol oscillator and the
Rössler oscillator as individual nodes of the network. Especially, in a Liénard system, we find
both the spatio-temporal chaos and spatial chaos in the noncoherent population.

[1] Y.Kuramoto and D.Battogtokh, Nonlin. Phen. in Complex Sys. 5, 380 (2002).
[2] C.Gu, G. St-Yves, J.Davidsen, Phys. Rev. Lett 111, 134101 (2013).
[3] I. Omelchenko, Y. L.Maistrenko, P.Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011).
[4] D.Dudkowski, Y.Maistrenko, T.Kapitaniak, Phys. Rev. E 90, 032920 (2014).
[5] E.A.Martens, S. Thutupallic, A. Fourrierec, O.Hallatscheka, Proc. Natl. Acad. Sci. 110,

10563 (2013).
[6] G.C. Sethia and A. Sen, Phys. Rev. Lett 112, 144101 (2014).
[7] L. Schmidt, K.Krischer, Phys. Rev. Lett., (2014).
[8] C.R.Hens, A.Mishra, P.K.Roy, A. Sen, S.K.Dana, Pramana-J. Phys. (in Press);

A.Mishra, C.R.Hens, M.Bose, P.K.Roy, S.K.Dana (in preparation).
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the homotopy method to solve dynamical systems
and boundary value problems for

differential equations

mahaveer gadiya
MIT College of Engineering, Pune University, Pune, India

e-mail: mahaveer.gadiya@mitcoe.edu.in

k. d.masalkar
Department of Mathematics, Abasaheb Garware College, Pune, India

e-mail: krishna−masalkar@rediffmail.com

In this paper we have discussed the analytical solution of boundary value problem

f ′′′ − ff ′′ + 4
(
1− f ′2

)
+M (1− f ′) = 0; f(0) = K, f ′(0) = 0, f ′(∞) = 1

by homotopy analysis method and also analytical solution of some nonlinear dynamical
systems by homotopy analysis method.
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infinite orbit equivalence class for a minimal
substitution dynamical system

olena karpel
B.Verkin Institute for Low Temperature Physics and Engineering

National Academy of Sciences of Ukraine, Kharkiv, Ukraine
e-mail: helen.karpel@gmail.com

The seminal paper [2] answered, among other outstanding results, the question of orbit
equivalence of uniquely ergodic minimal homeomorphisms of a Cantor set. It was proved that
two such minimal systems, (X,T ) and (Y, S), are orbit equivalent if and only if the clopen
values sets S(µ) = {µ(E) : E clopen in X} and S(ν) = {ν(F ) : F clopen in Y} coincide
where µ and ν are the unique invariant measures with respect to T and S, respectively.
Bratteli diagrams play an extremely important role in the study of homeomorphisms of
Cantor sets because any minimal (and even aperiodic) homeomorphism of a Cantor set is
conjugate to the Vershik map acting on the path space of a Bratteli diagram. This realization
turns out to be useful in many cases, in particular, for the study of substitution dynamical
systems because the corresponding Bratteli diagrams are of the simplest form.

In this talk, we focus on the study of orbit equivalence of minimal substitution dynamical
systems. For any primitive proper substitution σ, we give explicit constructions of countably
many pairwise non-isomorphic substitution dynamical systems {(Xζn , Tζn)}∞n=1 such that
they all are (strong) orbit equivalent to (Xσ, Tσ). We show that the complexity of the
substitution dynamical systems {(Xζn , Tζn)} is the essential difference that prevents them
from being isomorphic.

Theorem. Let σ be a proper substitution. Then there exist countably many proper
substitutions {ζn}∞n=1 such that (Xσ, Tσ) is orbit equivalent to (Xζn , Tζn), but the systems
{(Xζn , Tζn)}∞n=1 are pairwise non-isomorphic.

Given a primitive (not necessarily proper) substitution τ , we find a stationary simple
properly ordered Bratteli diagram with the least possible number of vertices such that the
corresponding Bratteli-Vershik system is orbit equivalent to (Xτ , Tτ ).

The results that will be presented during the talk are published in [1].

[1] S. Bezuglyi and O. Karpel, Orbit Equivalent Substitution Dynamical Systems and Com-
plexity. Proc. Amer. Math. Soc. 142 (2014), 4155–4169.

[2] T. Giordano, I. Putnam, C. Skau, Topological orbit equivalence and C∗-crossed products.
J. Reine Angew. Math. 469 (1995), 51–111.
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probability measures and dynamical systems
generated by continuous

nowhere monotonic functions

olexandr v. karpenko
National Pedagogical Dragomanov University, Kyiv, Ukraine

e-mail: sanyakpi@gmail.com

Let p be some prime, p > 2. We consider the matrix ||dij|| where elements:

d2kj = p−1, d2k−1j = −p−1, j = 1, p, k = 1, (p− 1)2−1.

In the research we consider the function:

f
(
4p2

α1(x)α2(x)...αn(x)

)
= βα1 +

∞∑
k−2

(
βαk

k−1∏
j−1

qα1

)
,

where
β0 = 0, βk = q0 + q1 + . . .+ qk−1,

qm = d[m·p−1],(m−p[m·p−1]).

Theorem 1. Function f(x) is correctly defined, continuous, winding and its graph is
a self affinity set of the space R2.

The report offers research results topological metric and fractal properties of these objects:
1. Distribution of function’s values:

Y = f(X),

where X – random variable with predetermined distribution.
2. Dynamic system ([0; 1], f, B, λ).
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reduction theory, coding of geodesics,
and continued fractions

svetlana katok
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I will discuss a method of coding of geodesics on surfaces of constant negative curvature
using boundary maps and "reduction theory". For compact surfaces these maps are gener-
alizations of the Bowen-Series map. For the modular surface they are related to a family of
(a,b)-continued fractions. In special cases, when an (a,b)-expansion has a so-called "dual",
the coding sequences are obtained by juxtaposition of the boundary expansions of the fixed
points, and the set of coding sequences is a countable sofic shift. I will also give a dynamical
interpretation of the ”reduction theory” which underlines these constructions and its relation
to the attractor of an associated natural extension map that parametrizes the corresponding
cross-section of the geodesic flow. The talk is based on joint works with Ilie Ugarcovici.
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aspects of the permutation entropy
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Recent results show that there is a close relation of the Kolmogorov-Sinai entropy and the
relatively new concept of Permutation entropy based on measuring the diversity of ordinal
patterns in a dynamical system. In order to get more insights into this relation, we discuss
how the Kolmogorov-Sinai entropy of a discrete-time measure-preserving dynamical can be
obtained from the ordinal patterns obtained via measurements by a collection of real-valued
random variables. We show that under certain separation conditions the distribution of
these patterns is sufficient for determining the Kolmogorov-Sinai entropy (see [1]). On the
base of this statement, we discuss Permutation entropy and, in the case of ergodicity, the
estimation of Kolmogorov-Sinai entropy. Finally, we give two new variants of Permutation
entropy, a conditional and a robust one (see [1, 3]), and illustrate their performance in data
analysis.

[1] K. Keller, S. Maksymenko, I. Stolz, Entropy determination based on the ordinal structure
of a dynamical system, to appear in Discrete Contin. Dyn. Syst. B.

[2] K. Keller, A.M. Unakafov, V.A. Unakafova, Ordinal Patterns, Entropy, and EEG, En-
tropy 16 (2014), 6212–6239.

[3] A.M. Unakafov, K. Keller, Conditional entropy of ordinal patterns, Physica D 269
(2014), 94–102.
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a novel model for explanation the regular and
chaotic dynamics in arterial blood flow

natalya kizilova
Kharkiv National University of V.N.Karazin, Kharkiv, Ukraine

e-mail: n.kizilova@gmail.com

Long measurements of the blood pressure P (t) and flow rate Q(t) oscillations in arteries
revealed prevalent regular dynamics in young healthy volunteers and frequent nonlinear
chaotic dynamics in elderly [1,2]. The heart rate variability, nonlinear properties of the blood
vessel wall and turbulent blood flow were discussed for explanation the chaotic behavior. As
it was shown in [3], the chaotic dynamics in elderly may appear in the distant parts of the
cardiovascular system (CVS), while in the central arteries the flow is quasi-regular.

In this paper the broad band noise with no distinct peaks (1/f noise) is found in the
power spectrum of the P (t) and Q(t) time series. The maximal Lyapunov exponents are
found to be negative in the central aorta and positive in the upper and lower extremities. A
model of the CVS as a series connection of n viscoelastic chambers is proposed. It is shown
the pressure oscillations in the chamber are governed by the nonlinear n-th order ODE

n∑
j=1

Aj
djP

dtJ
+ A0P =

n−1∑
j=1

Bj
djQ

dtJ
+ A0Q, (1)

where Aj, Bj are nonlinear functions of the material parameters and resistivities {Zi(Pi)}nj=1

of the chambers.
Solution of (1) has been studied at wide variations of the viscoelastic properties of the

chambers. It is shown the abnormal high compliance of the distant chambers may lead to
varying time delays between the responds of the chambers to the pressure variations and,
thus, to the chaotic dynamics. Direct applications to the medical diagnostics of deep vein
thrombosis and chronic arterial insufficiency in the lower extremities are discussed.

[1] C. D. Wagner, P. B. Persson, Chaos in the cardiovascular system. Cardiovasc. Res. 40
(1998), P.257–264.

[2] S. Cavalcanti, M. Ursino, Chaotic oscillations in microvessel arterial networks. Ann.
Biomed. Eng. 24 (1996), P.37–47.

[3] N. Kizilova, Blood flow in arteries: regular and chaotic dynamics. In: Dynamical systems.
Applications. /Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, K. (eds). Lodz
Politechnical University Press, 2013, P.69–80.
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on dynamical system of conflict with fair
redistribution of vital resources

volodymyr koshmanenko
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We discuss the properties of dynamical system of conflict [1] modelling the alternative
interaction between opponents.

Let the probability measures µ, ν describe the starting distribution of the vital resource
space Ω for a pair of opponents A,B. The problem is to find the law of conflict interaction
between A,B which ensures the compromise redistribution of Ω.

Assume that evolution changes of µ, ν are governed by the following nonlinear law of
conflict dynamic (cf. with [2, 3]):

µ̇ =
µΘ− τ

z
, ν̇ =

νΘ− τ
z

,

where Θ = Θ(µ, ν) is a positive quadratic form which fixes the so called conflict exponent
for opponents A,B and τ = τ(µ, ν) has sense of the occupation exponent. The meanings
of τ at each moment of time show the values of presence of opponents A,B on the opposite
territory. The denominator z ensures that measures µ(t), ν(t) are probability for all t > 0.

We prove that an appropriate construction of Θ and τ ensures the existence of the
ω-limit state {µ∞, ν∞} which corresponds to the fair redistribution of the vital resources
space Ω between opponents A,B. The fair means that µ∞, ν∞ coincide with the normalized
components of the classic Jordan decomposition of the signed measure ω = µ−ν = ω+−ω−,
i.e.

µ∞ = µ+ :=
ω+

ω+(Ω)
, ν∞ = ν− :=

ω−
ω−(Ω)

.

[1] V. Koshmanenko, The Theorem of Conflict for Probability Measures, Math. Methods of
Operations Research, 59:2 (2004), 303–313.

[2] P.T. Coleman, R. Vallacher, A. Nowak, L. Bui-Wrzosinska, Interactable Conflict as an
Attractor: Presenting a Dynamical-Systems Approach to Conflict, Escalation, and Inter-
actability, IACM Meeting Paper (2007).

[3] M.H.G. Hoffmann, Power and Limits of Dynamical Systems Theory in Conflict Analysis,
IACM Meeting Paper (2007).
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Topological entropy is one of the important invariants in the theory of dynamical systems.
However, the definition of topological entropy is not effective to describe the complexity of
infinite-dimensional dynamical systems. In [3], [4] it is proved that for the dynamical systems
(C([0, 1], I), Z+, T ), where T : C([0, 1], I)→ C([0, 1], I) has the form T (ϕ)(t) = f(ϕ(t)), f ∈
C(I, I), the value of topological entropy is either 0 or +∞. Thus such definition of entropy
does not help us to conduct thorough analysis of such systems.

The purpose of this work is to offer an analogue of definition of entropy, by which it is
possible to evaluate the complexity of such dynamical systems more effectively. By evalu-
ating the number of (n, ε)-separated continuous functions firstly for fixed function T , and
then for general case, we conclude that for systems above it is reasonable to use value
lim supε→0 ε limn→∞

lnN(n,ε)
n

as such analogue definition of entropy.
In more general case, for dynamical systems (C(L, I), T ), where L is a compact, T (ϕ)(t) =

f(ϕ(t)), we can consider the value lim supε→0 NL(ε)−1 limn→∞
lnN(n,ε)

n
, where NL(ε) denotes

the minimal number of elements in cover of L by balls with diameter ε. This value is finite if
the topological entropy of function f is finite. In the case L ⊂ Rd this value is also nonzero
if the topological entropy of f is nonzero.

If we consider system (C(L,K), T ), where L,K are compacts, then to evaluate its com-
plexity we must analyze properties of sets K and L, connected with the number of elements
in their ε-covers and with the structure of these ε-covers, for example, the mean dimension,
considered in [1], [2].

[1] Y. Gutman, M. Tsukamoto, Mean dimension and a sharp embedding theorem: extensions
of aperiodic subshifts. Ergodic Theory and Dynamical Systems 34 (2014), 1888–1896.

[2] E. Lindenstrauss, B. Weiss, Mean topological dimension. Israel J. Math. 115 (2000), 1–24.

[3] M. Matviichuk, Entropy of induced maps for one-dimensional dynamics. Iteration theory
(ECIT 2008), Grazer Math. Bericht Nr. 354 (2009), 180–185.

[4] A. N. Sharkovsky, E. Yu. Romanenko, Difference equations and dynamical systems gen-
erated by certain classes of boundary value problems. Proceedings of the Steklov Institute
of Mathematics 244 (2004), 264–279.
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solving for the fixed points of 3-cycle in the
logistic map and toward realizing chaos by
the theorems of sharkovskii and li-yorke

m. howard lee
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Sharkovskii proved that, for continuous maps on intervals, the existence of 3-cycle implies
the existence of all others. Li and Yorke proved that 3-cycle implies chaos. To establish
a domain of uncountable cycles in the logistic map and to understand chaos in it, the fixed
points of 3-cycle are obtained analytically by solving a sextic equation. At one parametric
value, a fixed-point spectrum, resulted from the Sharkovskii limit, helps to realize chaos in
the sense of Li and Yorke.
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numerical methods for solving systems of
nonlinear volterra integral equations
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xiaoyan liu
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The aim of this paper is to develop numerical methods for solving systems of Volterra
integral equations with cardinal splines. The unknown functions are expressed as a linear
combination of horizontal translations of certain cardinal spline functions with small compact
supports. Then a simple system of equations on the coefficients is obtained for the system of
integral equations. It is relatively straight forward to solve the system of unknowns and an
approximation of the original solution with high accuracy is achieved. Several cardinal splines
are used in the paper to enhance the accuracy. The sufficient condition for the existence of
the inverse matrix is examined and the convergence rate is investigated. Examples are given
to demonstrate the benefits of the methods.

[1] A. Adawi and F. Awawdeh, A Numerical Method for Solving Linear Integral Equations,
Int. J. Contemp. Math. Sciences, 4, 2009, no. 10, 485–496.

[2] X. Liu, Univariate and Bivariate Orthornormal Splines and Cardinal Splines on the
Compact Supports, Journal of Computational and Applied Mathematics, 195 (2006)
93–105.

[3] C. K. Chui, Multivariate Splines, SIAM, Philadelphia, (1988).
[4] I. J. Schoenberg, On trigonometric spline functions, J. Math. Mech. 13 (1964), 795–825.
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on dp-approach to fractal properties of random
variables with independent identically

distributed lml-symbols
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The talk is devoted to the metric and dimensional theories of LML-expansions of real
numbers which are generalizations of the corresponding theories of Lüroth expansions, GLS-
expansions and x−Q∞-expansions.

We also develop probabilistic theory of such expansions and study fine fractal properties
of the corresponding singularly continuous probability distributions.

During the talk we will discuss DP-approach for the study of properties of such distribu-
tions which is based on deep connections between transformations preserving the Hausdorff
dimension and the faithfulness of Vitaly coverings.

[1] R.Nikiforov, G.Torbin, On the Hausdorff dimension of generalized self-similar sets gen-
erated by infinite IFS [in Ukrainian]. Transactions of National Pedagogical Dragomanov
University. Series 1: Phys.-Math. Sciences 13 (1), Kyiv, 2012, 151–162.

[2] I. Garko, G.Torbin, x−Q∞-expansions of real numbers and related problems [in Ukrain-
ian]. Abstracts of the International Conference “Asymptotic Methods in Theory of Dif-
ferential Equations”, December 13–14, 2012, Kyiv, 48–50.
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forced rotation of a ferromagnetic fine particle
in a viscous carrier: the stationary

probability density

taras v. lyutyy, stanislav i. denisov, vladislav v. reva
Sumy State University, Sumy, Ukraine

e-mail: lyutyy@oeph.sumdu.edu.ua

Ferrrofluids are the complex systems with high potential application, which are widely
spread from engineering to biomedicine. Most descriptions of these media are grounded on
the concept of ferrohydrodynamics [1], where ferrofluid is considered as a continuous media.
But a lot of effects can be described properly only in terms of the microscopic structure of
ferrofluid. In particular, the problem of the AC-field absorption and further ferrofluid heating
for the case of rather fine dispersed nanoparticles was investigated within the framework of
the complex magnetic susceptibility [2]. But, when the magnetic energy is comparable with
the thermal one, one should to account the individual Brownian rotation of each particle.

For practical purposes, the probability density function of the nanoparticle rotational
states is the main characteristic with respect to its rotational motion. The above mentioned
function is the solution of the appropriate Fokker-Plank equation [3]. We suppose that the
particle is under the action of the field H = h(ex cos Ωt + ey sin Ωt) + ezhz. Here h and Ω
are the rotating field amplitude and frequency, respectively, hz is the static field value, ex,y,z
are the unit vectors of the Cartesian coordinates, t is the time. The approximate stationary
solution of the Fokker-Planck equation has the following form:

P (θ,Φ) = P0 ·
[
1− τ 2

2τr
hΩ sin θ sin Φ +

τ 3

24τ 2
r

hΩ
(
hz sin 2θ sin Φ + h sin2 θ sin 2Φ

)]
, (1)

where P0 = C sin θ exp [−Wτ/τr] ,W = −h sin θ cosϕ− hz cos θ, C is the normalization con-
stant, θ, ϕ are the angular coordinates of the nanoparticle magnetic moment, Φ = ϕ − Ωt,
τr = 6η/M2, τ = 6ηV/kBT , η is the liquid viscosity, M is the nanoparticle magnetisation,
V is the nanoparticle volume, kB is the Boltzmann constant, T is the temperature. Our
analytical findings were confirmed by the numerical simulation.

[1] R. Rosensweig, Ferrohydrodynamics Cambridge University Press, (1985).
[2] R. E. Rosensweig, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn.

Mat. 252 (2002), 370.
[3] Yu. L. Raikher, and M. I. Shliomis, The effective field method in the orientational kinetics

of magnetic fluids, Adv. Chem. Phys. 87 (1994), 595.
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systems with memory, nonlocality and anticipation.
some new examples and new research problems

alexander makarenko, sergey lazarenko, anton popov
Institute for Applied System Analysis at National Technical Univesity of Ukraine (KPI)

Kyiv, Ukraine
e-mail: makalex@i.com.ua, makalex51@gmail.com

Recently some new solutions have been found for distributed media : dynamical chaos,
oscillations, autowaves, synchronization and quite recently “chimera” states. Till now mostly
the classical parabolic equations (or related with them) have been used. But now it was
recognised that more accurate equations should be used (see for example [1]. Here we describe
some possibilities for posing new research problems. First of all we consider the models with
memory (relaxation). In such case on of the classes of models constitute the infinite systems
of o.d.e of second order in time received by projection methods. Such systems remember the
systems of coupled oscillators. So the problems of energy transitions on spectrumreceives
new solutions (from large to small scales). At second, we consider quasilinear hyperbolic
Burgers equation of second order in time [1]. However, it is not enough studied. There are
examples of the new solutions in the report. Fractal theory is one of the most flourishing
mathematic modeling directions which find its application in the use of new and new fields
of technology and basic research, including cellular automata theory, pattern recognition,
artificial intelligence etc. One of the most important its question is a determination and
an estimation for fractal dimensions of such fractal sets. Here we consider the attractors of
dynamic systems with multi-valued evolution operators. We have gotten an upper estimation
for Hausdorff dimension of the attractors of such kind of systems. The basic example is the
logistic (Ferhulst) equation with the anticipatory property. Finally, the new possibilities
supply the accounting of nonlocality. This follows to presumable origin of new “chimera”
states in hydrodynamics. In addition, accounting of anticipation follows to the possibilities
of multivalued “chimera” states.

[1] V.A.Danylenko, T.B.Danevych, O. S.Makarenko, S. I. Skurativskyi, V.A.Vladimirov,
Self-organization in nonlocal non-equilibrium media. Subbotin in-t of geophysics NASU,
Kyiv, (2011).
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one special construction in the spectral
theory of C0-semigroups

vitalii marchenko
B.Verkin Institute for Low Temperature Physics and Engineering

NAS of Ukraine, Kharkiv, Ukraine
e-mail: v.marchenko@ilt.kharkov.ua, vitalii.marchenko@karazin.ua

In joint work with Prof. Dr.Grigory M. Sklyar (Institute of Mathematics, University
of Szczecin, Szczecin, Poland & Kharkiv National University of V.N.Karazin, Kharkiv,
Ukraine) we present the construction of the generator of a C0-group with the following
properties. It has simple eigenvalues {λn}∞n=1, which essentially cluster at infinity, i.e.
lim
n→∞

|λn−λn+1|=0, and corresponding family of eigenvectors is dense but do not form a
Schauder basis. This construction is closely related with the recent results of G.Q. Xu et
al. [1] and H. Zwart [2] on Riesz basis property of eigenvectors (eigenspaces) of infinitesimal
operators. The discrete Hardy inequality for p = 2 plays a key role in our approach.

Let H be a Hilbert space with norm ‖·‖ and Riesz basis {en}∞n=1. Consider the operator T
defined on H as Ten = en+1. By H1 ({en}) we then denote the completion of the space
H0

1 ({en}) = {x ∈ H : ‖x‖1 = ‖(I − T )x‖} . It can be shown that

H1 ({en}) =

{
x = (f)

∞∑
n=1

cnen : {cn}∞n=1 ∈ `2(∆)

}
,

where (f)
∞∑
n=1

cnen is a formal series, `2(∆) is the space of all sequences whose differences are

2-absolutely summable, and ∆ denotes a difference operator. It turns out that {en}∞n=1 is
dense in H1 ({en}) but does not form a Schauder basis in H1 ({en}).

The main result of the work can be formulated as follows. The operator A : H1 ({en}) ⊃
D(A) 7→ H1 ({en}) defined by the formula Ax = A(f)

∞∑
n=1

cnen = (f)
∞∑
n=1

i lnn · cnen, with

domain

D(A) =

{
x = (f)

∞∑
n=1

cnen ∈ H1 ({en}) : {lnn · cn}∞n=1 ∈ `2(∆)

}
,

generates a C0-group {eAt}−∞<t<∞ on H1 ({en}). Moreover, we note that, surprisingly, the
constructed C0-group {eAt}−∞<t<∞ has a linear growth when t→ ±∞.

[1] G. Q. Xu, S. P. Yung, The expansion of a semigroup and a Riesz basis criterion. J. Dif-
ferential Equations 210 (2005), 1–24.

[2] H. Zwart, Riesz basis for strongly continuous groups. J. Differential Equations 249 (2010),
2397–2408.
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dynamical systems approach for multidimensional
phase transformation models

and their applications

roderick melnik
The MS2Discovery Interdisciplinary Research Institute and
Department of Mathematics, Wilfrid Laurier University
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e-mail: rmelnik@wlu.ca

Coupled dynamic systems of partial differential equations (PDEs) provide a foundation
for many application areas in science and engineering [1, 2]. Mathematical studies of such
systems lead to very challenging problems, in particular when we have to deal with system
nonlinearities in time-dependent situations. Associated challenges are amplified further when
multidimensional problems have to be addressed.

In this contribution, we analyze a large class of multidimensional coupled nonlinear sys-
tems of PDEs describing phase transformations. Mathematically they can be cast in the
dynamical systems framework. One of the most important consequences of that is a pos-
sibility of developing efficient reduction procedures for these multidimensional models to
low dimensions where the dynamics can be analyzed and dealt with on low dimensional
manifolds. However, in these cases traditional procedures representing all effects at lead-
ing order of a small parameter can result in misleading outputs. Our exemplifications here
are based on mathematical models describing coupled nonlinear phenomena in materials
with memory, where we focus on cubic-to-tetragonal martensitic phase transformations in
three dimensional settings under dynamic loading conditions. Mathematically, the resulting
models can be formulated as free boundary problems due to interfacial conditions between
different phases of the material. Within the Landau framework of phase transformations
based on non-monotone free energy functions, the systems of interest here are reducible to
parabolic-hyperbolic equations and we discuss their mathematical treatments from both an-
alytical and numerical perspectives, including our developed low dimensional reduction and
isogeometric methodologies. A number of examples from applications, where such coupled
dynamic models play an important role, are demonstrated and discussed in the context of
these developed methodologies.

[1] R. V. N. Melnik and A. J. Roberts, Modelling nonlinear dynamics of shape-memory-
alloys with approximate models of coupled thermoelasticity. Zeitschrift Fur Angewandte
Mathematik und Mechanik (ZAMM) 83(2) (2003), 93–104.

[2] R. Dhote, M. Fabrizio, R. Melnik, and J. Zu, A three-dimensional non-isothermal
Ginzburg-Landau phase-field model for shape memory alloys. Modelling and Simulation
in Materials Science and Engineering 22 (8) (2014), 085011.
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on phenomena connected with infinite ifs

roman nikiforov
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We establish several new probabilistic, fractal and number theoretical phenomena con-
nected with the Q∞-expansion which is generated by iterated function systems consisting

of infinite similitudes with positive ratios qi such that
∞∑
i=1

qi = 1. First of all we show that

system of cylinders of this expansion is, generally speaking, not faithful, i.e., to determine
the Hausdorff dimension of a set from the unit interval one is not restricted to consider only
coverings consisting of the above mentioned cylinders. We prove sufficient conditions for the
non-faithfulness of the family of Q∞-cylinders. On the other hand, sufficient conditions for
the faithfulness of such covering systems are also found.
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deterministic diffusion

leonid nizhnik, irina nizhnik
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

One-dimensional dynamical systems on the entire axis with discrete time are defined by
the recurrence relation

xn+1 = f(xn). (1)

If a probability measure µ0 (a normalized measure for which the measure of the entire axis
is equal to 1) with density ρ0 :µ0(A) =

∫
A

ρ0(x) dx is given at the initial time, then, for

a unit of time, system (1) maps this measure into µ1 :µ1(A) = µ(f−1(A)), where f−1(A) is
a complete preimage of the set A under the map f. The operator mapping the measure µ0

into the measure µ1 is called a Perron–Frobenius operator F .
The dynamical system (1) with a function f satisfying property

f(k + x) = k + f(x), |x| < 1

2
, k ∈ Z (2)

is called a Lifted Dynamical System (LDS).
We say that the LDS (1)–(2) has a deterministic diffusion(DD) if, for any initial prob-

ability measure µ0 with bounded density, there exists a sequence of numbers σ2
n > 0 and

ξn and 1–periodic function α(x) ≥ 0,
1/2∫
−1/2

α(x) dx = 1, such that the sequence of measures

µn = Fnµ0 obtained from the initial measure by the n-fold action of the LDS, is asymptoti-
cally equivalent, as n→∞ to a sequence of normal measures with densities

ρn(x) =
α(x)

σn
√

2π
e
− (x−ξn)2

2σ2n .

We find conditions of existence of DD in LDS (1)–(2). We give exact values of coefficients
of DD for the case of a linear function f in the main interval I0 = [−1

2
, 1

2
). Models are

suggested in [2], including two-dimensional dynamical systems of the form xn+1 − xn =
xn − xn−1 + f(xn). They are useful within consideration of point particles transport in
a billiard channel with complex boundary. DD is anomalous in such systems.

[1] L. Nizhnik and I. Nizhnik, Deterministic diffusion, Preprint, (2015), http://arxiv.org/
pdf/1501.00674.pdf[math.DS]

[2] S. Albeverio, G. Galperin, I. Nizhnik and L. Nizhnik, Regular and Chaotic Dynamics
10 (3) (2005), 285-306.
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studies on chaos and hyperchaos in
four-dimensional sprott systems
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e-mail: ojoniyi2013@gmail.com

Dynamical analysis of chaotic and hyperchaotic attractors have been carried out on gen-
erated four-dimensional (4D) Sprott systems in the present work. J.C. Sprott [1] published
a catalogue of nineteen (19) simple three-dimensional (3D) chaotic systems where it was
demonstrated that there could be extremely simple three-dimensional chaotic systems com-
pared with the work of Lorenz [2] and Rossler [3] in terms of algebraic representation rather
than referring to the physical processes being modeled.

Practically, 4D or higher modes are better models for dynamical systems (dimensions is
the number of variables considered in the model) [4]. Rossler [5] proposed the first (4D)
hyperchaotic attractor, since then a number of hyperchaotic attractors and techniques for
their generation have been reported from a hitherto (3D) chaotic system numerically and
experimentally such as the addition of a linear simple-state-feedback controller [6] and in an
open-loop manner by sinusoidal parameter perturbations [7, 8]. Generation of hyperchaotic
dynamics has relied on mixing bifurcation analysis and computer simulations since there is
no unified method for the construction of chaotic and hyperchaotic systems [9].

Lyapunov exponents algorithm was used in the present work to derive 4D algebraically
simple chaotic and hyperchaotic Sprott systems from the 3D algebraically simple systems.
These set of seventeen (17) (out of the nineteen proposed by Sprott) 4D dissipative systems
display simple chaotic and hyperchaotic dynamics with parameter perturbations in the sys-
tems. Dynamical analysis was carried out using Lyapunov exponents, bifurcation diagrams,
Poincare maps and phase portraits to authenticate the existence of these attractors which
have potential applications in secure communications, neural networks, complex biological
systems and laser physics.

[1] J. C. Sprott, Some simple chaotic flows. Physical Review E 50 (1994), R647-R650.

[2] E. N. Lorenz, Deterministic non-periodic flow. Journal of Atmospheric Sciences 20
(1963), 130-141.

[3] O. E. Rossler, An Equation for Continuous Chaos. Physics Letters 57A (1976), 397-398.

[4] Z. E. Musielak, D. E. Musielak, High-dimensional chaos in dissipative and driven dy-
namical systems. In: IASTED International conference on modern nonlinear theory:
Bifurcation and chaos, Tutorial paper, Montreal, Canada, 2007, 1-40.

[5] O. E. Rossler, An Equation for Hyperchaos. Physics Letters 71A (1979), 155-167.

[6] V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations.
Springer, New York (1988).
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[7] Y. Li, G. Chen, WKS. Tang, Controlling a unified chaotic system to hyperchaotic. IEEE
Transactions on Circuits and Systems-II 52 (2005), 204-207.

[8] Y. Li, WKS. Tang, G. Chen, XC. Su, Hyperchaotic Chens system and its generation.
Dynamics of Continous, Discrete and Impulsive System Series B 14 (2007), 97-102.

[9] Y. Li, X. Liu, G. Chen, X. Liao, New hyperchaotic Lorenz-type system: Generation,
analysis, and implementation. International Journal of Circuit Theory and Applications
39 (2011), 865-879.
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invariant measures in projective bundle
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The aim of the talk is to analyze the connection between Lyapunov exponents and invari-
ant measures in projective bundle by using the symbolic image technique. Symbolic image of
a dynamical system with respect to a covering is a directed graph with vertices correspond-
ing to cells of the covering and edges corresponding to transitions between cells by system
dynamics. The transformation of the system flow into a symbolic image allows reducing the
problems of dynamical systems to the tasks on graphs. In this case a flow on the graph
corresponds to an invariant measure and a mean of the graph labeling corresponds to a Lya-
punov exponent. Symbolic image is a tool which may be successfully applied both to prove
important results and to perform computer modelling of complex dynamical systems. The
Morse spectrum is a collection of exponents of all orbits. The implementation of symbolic
image gives an opportunity to calculate the Morse spectrum and to check hyperbolicity in
complicated cases. The example of such a verification is given.
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topologically conjugated unimodal interval maps
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Let v ∈ (0, 1) be and arbitrary real and let f and fv be [0, 1] → [0, 1]-maps, which are
defined as follows:

f(x) =

 2x, x 6 1/2;

2− 2x, x > 1/2,
fv(x) =


x

v
, x 6 v;

1− x
1− v

, x > v.

We will pay attention to the following problems:
1. It is known [2], that mappings f and fv are topologically conjugated and correspond

homeomorphism h has the derivative 0 almost everywhere. We show, that for v < 1/2 the
derivative h′ equals +∞ on the dense subset of [0, 1];

2. We find evident formulas for the mapping h, which defines the topological conjugation
of f and fv, defining h as some convergence limit of functions;

3. The definition of topological conjugateness of f and fv leads to the system of linear
functional equations. The solution of each of these functional equations is given in [1] and
each of them depends on an arbitrary function, which should be found from another equation.
We study properties of these “arbitrary” functions;

4. Any continuous solution h : [0, 1] → [0, 1] of the functional equation h(f) = f(h) is
piecewise linear and is the following. y-coordinates of sharp points of h are equal to either 0
or 1 and absolute value of its tangent is a constant integer for all points where it exists; the
tangent value of h can be equal to either 1, or an arbitrary even integer;

5. We study the topological conjugation of the map f and an arbitrary piecewise linear
unimodal map g : [0, 1] → [0, 1], such that their topological conjugation is defined by a
piecewise linear homeomorphism h. We prove, that in this case increasing part of g defines
its decreasing part and also deceasing part of g defines its increasing part.

These results were obtained during the productive conversations with Dr. Volodymyr
Vasyliovych Fedorenko.

[1] G.P. Peliukh, A. N. Sharkovskiy, Introduction to functional equations theory. Nukova
Dumka, Kyiv, (1974).

[2] J. D. Skufca, E. M. Bolt, A concept of homeomorphic defect for defining mostly conjugate
dynamical systems. Chaos, 03118 (2008), 1-18.
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2Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
3Vinnytsya State Pedagogical University, Vinnytsya, Ukraine
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Let 1 < s is fixed integer and As ≡ {0, 1, . . . , s− 1} is the alphabet. The series

x =
∞∑
k=1

αks
−k ≡ ∆s

α1α2...αk...
,

is called s-adic representation of real number x ∈ [0, 1]. Last short (sybolic) record ∆s
α1α2...αk...

is called s-adic image of real number x. Let vector

q = (q0, q1, . . . , q8) =

(
1

3
,−1

3
,
1

3
,
1

3
,−1

3
,
1

3
,
1

3
,−1

3
,
1

3

)
,

β0 = 0, βk = q0 + q1 + . . .+ qk−1 = βk−1 + qk−1, k = 1, 9

is defined. We consider dynamical system with phase space [0, 1]× [0, 1] ⊂ R2 and mapping
T = {T0, T1, . . . , T8}, where

Ti(x, y) = Ti(∆
9
α1α2...αk...

,∆q
α1α2...αk...

) = T (∆9
iα1α2...αk...

,∆q
iα1α2...αk...

) =

(
1

9
x+

i

9
, qiy + βi

)
.

The attractor of this dynamical system is connected set, that is the graph of continuous
nowhere monotone function and this function on any open interval I ⊂ [0, 1] assumes every
value between its infI f(x) and supI f(x) a non-denumerable number of times where inf < sup
(excluding intervals of constancy). Function has the following analytic description

f(x) = f(∆9
α1α2...αk...

) = βα1(x) +
∞∑
k=1

(
βαk(x)

k−1∏
j=1

qαj(x)

)
≡ ∆q

α1α2...αk...
, αk ∈ A9.

In the report we put full description of topological, metric and fractal properties of
functions f .

46



Dynamical Systems and Their Applications June 22 – 26, 2015, Kyiv, Ukraine

robust feedback synthesis for a disturbed
canonical system

tetyana revina
Kharkiv National University of V.N.Karazin, Kharkiv, Ukraine

e-mail: t.revina@karazin.ua

The paper deals with the robust feedback synthesis of a bounded control for a system
with an unknown perturbation. Namely, we consider the system of the form

ẋ1 = (1 + p(t, x))x2, ẋ2 = (1 + r2p(t, x))x3, . . . , ẋn−1 = (1 + rn−1p(t, x))xn, ẋn = u. (1)

Here t ≥ 0, x ∈ Rn is a state (n ≥ 2), u ∈ R is a control satisfying the constraint |u| ≤ 1, ri,
i = 2, . . . , n− 1 are given numbers, and p(t, x) is an unknown perturbation, which, however,
satisfies the constraint d1 ≤ p(t, x) ≤ d2.

Our approach is based on the controllability function method created by V. I. Korobov
in 1979 [1]. The global robust feedback synthesis problem is to construct a control of the
form u = u(x), x ∈ Rn, such that: (i) |u(x)| ≤ 1; (ii) the trajectory x(t) of the closed
system, starting at an arbitrary initial point x(0) = x0 ∈ Rn, ends at the origin at a finite
time T (x0, p) < ∞ for any admissible perturbation d1 ≤ p(t, x) ≤ d2; (iii) the control is
independent of p(t, x).

The goal of our work is to find the largest interval [d1; d2] and to propose a constructive
control algorithm.

Let

F−1 =

(
(−1)2n−i−j

(n− i)!(n− j)!(2n− i− j + 1)(2n− i− j + 2)

)n
i,j=1

,

D(Θ) = diag
(

Θ−
2n−2i+1

2

)n
i=1

, F 1 = ((2n− i− j + 2)fij)
n
i,j=1, S = FR̃ + R̃∗F.

Theorem. Let us choose 0 < γ1 < 1, γ2 > 1. Put

d̃0
1 = 1/λmin((F 1)−1S), d̃0

2 = 1/λmax((F
1)−1S),

d0
1 = max{(1− γ1)d̃0

1; (1− γ2)d̃0
2}, d0

2 = min{(1− γ1)d̃0
2; (1− γ2)d̃0

1}.
Let the controllability function Θ(x) is a unique positive solution of equation

2a0Θ = (D(Θ)FD(Θ)x, x), x 6= 0, Θ(0) = 0, 0 < a0 ≤ 2/fnn.

Then for all d1 and d2 such that d0
1 < d1 < d2 < d0

2, the control of the form

u(x) = −Θ−
1
2 (x) FD(Θ(x))x/2

solves the global robust feedback synthesis problem for system (1). Moreover, the trajectory
of the closed-loop system, starting at any initial point x(0) = x0 ∈ Rn, ends at the point
x(T ) = 0, where the time of motion Θ(x0)/γ2 ≤ T (x0, d1, d2) ≤ Θ(x0)/γ1.

[1] V. I. Korobov, Controllability function method (Russian). R&C Dynamics, M.-Izhevsk
(2007).
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The nonlinear difference equations with continuous time

x(t+ 1) = f(x(t)), t ∈ R+, (∗)

where f : I → I is a continuous map of the interval I ⊆ R, exhibit a surprising vari-
ety of solutions, up to quasi-random ones, that are indistinguishable at large time from
stochastic processes. Here we have a situation wherein behavioral complexities of nonlinear
one-dimensional maps intrude into the solutions of difference equations, and we can observe
“purely nonlinear” features of solutions, in particular:

– asymptotic discontinuity (gradient catastrophe),
– fractal geometry of graphs (up to likeness to space-filling curves),
– unpredictability (impossibility of foretelling on large time scales),
– self-stochastization (obedience to certain probabilistic laws).
This talk is a brief presentation of the recently published (2014, December) book “Dif-

ference Equations with Continuous Argument” by E.Romanenko. The book summarizes
the many years’ research, carried out in the Institute of Mathematics, and gives the first
complete exposition of the qualitative theory of equation (∗).

Analysis is based on going to the infinite-dimensional dynamical system generated by
equation (∗) on its space of initial states. This method, which belongs among the most
commonly used tools for the study of evolutionary problems, poses some problems when
employing to equation (∗): In typical situations, the associated dynamical system has no
attractor in its own phase space. Overcoming this obstacle and identifying peculiar features
of solutions, which it causes, take a central place in the book.

These findings assume major importance because many boundary value problems for
partial differential equations are reducible to difference equations with continuous time, and
the latter give an elegant scenarios for onset of spatio-temporal chaos and reconstructions
inside chaos, in particular:

– cascade emergence of coherent structures,
– chaotic mixing,
– intermittency.
Difference equations of the form (∗) seems to be very useful and efficient in modeling

a variety of complex nonlinear processes, including turbulence.
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sensitivity of the induced systems on an interval

oleksandr rybak
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e-mail: semperfi@ukr.net

We consider the dynamical systems (C(I), f), where C(I) is the family of all closed
connected non-empty subsets of a closed interval I. In fact, C(I) is a family of all intervals
[a, b] with a ≤ b and a, b ∈ I. The function f is an arbitrary mapping from I to itself, which
is naturally extended to subsets as f(A) = f(x)|x ∈ A. In C(I) we use the Hausdorff metrics
dH , which could be defined as dH([a, b], [c, d]) = max{|a − c|, |b − d|} for any two intervals
[a, b] and [c, d].

We study the sensitivity of the mentioned systems. Namely, we analyze, how notably
the iterations fn([a, b]) will change, if we modify the starting interval [a, b] in a very slight
way. The main result is the fact, according to which there is an interval [a, b] ⊂ I, which is
an equicontinuous point for all mappings fn. To prove this fact author used a theorem of
Fedorenko, by which the sequence of the intervals fn([a, b]) is asymptotically periodic unless
all such intervals are disjoint [1].

[1] V. V. Fedorenko, Asymptotical periodicity of the trajectories of an interval, Ukrainian
Mathematical Journal, 61 (2009), 854–858.
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topological classification of linear mappings

tetiana rybalkina
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e-mail: rybalkina−t@ukr.net

We consider pairs of linear mappings (A,B) of the form

V
A

W
B

(1)

in which is //oo or // ;// V and W are finite dimensional unitary or Euclidean
spaces. We say that (1) transforms to

V ′
A′

W ′
B′

(with the same orientation of arrows) by bijections ϕ1 : V → V ′ and ϕ2 : W → W ′ if

A′ϕ1 = ϕ2A and B′ϕ2 = ϕ1B for the case //oo

A′ϕ1 = ϕ2A and B′ϕ1 = ϕ2B for the case // //

We say that (A,B) and (A′,B′) are linearly equivalent if ϕ1 and ϕ2 are linear bijections
and topologically equivalent if ϕ1 and ϕ2 are homeomorphisms.

A pair of linear mappings (A,B) is regular if A and B are bijections, and singular oth-
erwise. Each pair of linear mappings (A,B) possesses a regularizing decomposition in direct
sum of the regular part and indecomposable singular pairs of linear mappings.

We obtained classification of pairs of linear mappings up to topological equivalence in [1]
for the case //// and in [2] for the case //oo . We combine these results in the following
theorem.

Theorem 1 The pairs of linear mappings (A,B) and (A′,B′) of the form (1) are topo-
logically equivalent if and only if their regular parts are topologically equivalent and their
indecomposable singular summands are linearly equivalent.

[1] V. Futorny, T. Rybalkina, V. V. Sergeichuk, A regularizing decomposition of matrix
pencils and a topological classification of pairs of linear mappings. Linear Algebra Appl.
450 (2014), 121–137.

[2] T. V. Rybalkina, Topological classification of pairs of counter linear maps. Mat. Stud.
39 (2013), 21–28 (in Ukrainian).
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on potentiality of some evolutionary equations
with deviating arguments

vladimir m. savchin
Department of Mathematical Analysis and Theory of Functions

Peoples’ Friendship University of Russia
Miklukho-Maklaya Str., 6, 117198 Moscow, Russia

e-mail: vsavchin@yandex.ru

Definition. The operator N : D(N) ⊂ U → V is said to be potential on the set D(N)
relative to the bilinear form Φ : V × U → R, if there exists a functional FN : D(FN) =
D(N)→ R such that δFN [u, h] = Φ(N(u), h) ∀u ∈ D(N), ∀h ∈ D(N ′u).

Theorem. Suppose that D∗t = −Dt on D(N ′u); then for operator

N(u) ≡ P2u,tutt + P1u,tut +Q(t, u) = 0V ,

u ∈ D(N) ⊆ U ⊆ V, t ∈ [t0, t1] ⊂ R; ut ≡ Dtu ≡
d

dt
u, utt ≡

d2

dt2
u.

to be potential on D(N) relative to bilinear form Φ(·, ·) ≡
t1∫
t0

< ·, · > dt : V × U → R it is

necessary and sufficient to have on D(N ′u)

P2u − P ∗2u = 0, (1)

P ∗′2u(·;ut) = 0, (2)

−2
∂P ∗2u
∂t

+ P ∗1u + P1u = 0, (4)

−∂
2P ∗2u
∂t2

+
∂P ∗1u
∂t

+Q′u −Q′u
∗

= 0, (5)

−
(
∂P ∗2u
∂t

)′
u

(·;ut)−
∂P ∗′2u

∂t
(·;ut) + P ∗′1u(·;ut) + P ′1u(ut; ·)− [P ′1u(ut; ·)]∗ = 0, (6)

P ′2u(utt; ·)− P ∗′2u(·;utt)− [P ′2u(utt; ·)]∗ = 0, ∀u ∈ D(N), ∀t ∈ [t0, t1]. (7)

Theorem is applied for the construction of variational principles for the given differential-
difference equations with partial derivatives.

[1] V.M.Filippov, V.M. Savchin, S.A.Budochkina On the existence of variational princi-
ples for differential-difference evolution equations. Trudy MIAN 283 (2013), pp. 25–39
[in Russian].
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on singularity of distribution of random variables
with independent symbols of oppenheim expansions
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Any real number x ∈ (0, 1) leads to the Oppenheim expansion

x ∼ 1

d1

+
a1

b1

1

d2

+ . . .+
a1a2 · . . . · an
b1b2 · . . . · bn

1

dn+1

+ . . .

where an = an(d1, . . . , dn), bn = bn(d1, . . . , dn) are positive integers and the denominators dn
are determined by the algorithm:

x = x1; dn =

[
1

xn

]
+ 1; xn =

1

dn
+
an
bn
xn+1,

and satisfy inequalities dn+1 >
an
bn
dn(dn − 1) [1].

We call expansion the restricted Oppenheim expansion (ROE) of x if an and bn depend

only on the last denominator dn and if the function hn(j) :=
an(j)

bn(j)
j(j− 1) is integer valued.

Each of the cylinders of ROE-expansion can be uniquely rewritten in terms of the Dif-
ference ROE-expansion (ROE): α1 = d1; αk+1 = dk+1 −

ak
bk
dk(dk − 1).

Let ξ1(x), ξ2(x), . . . , ξn(x), . . . be a sequence of independent random variables and
ξ = ∆ROE

ξ1(x)ξ2(x)...ξn(x)... be a random variable with independent symbols of ROE-expansion,
P{ξk = i0} = pi0k.

Theorem. If there exist a sequence lk, such that ∀x ∈ [0, 1] :
ak−1

bk−1

b2
k

a2
k

1

dk−1(dk−1 − 1)
< lk

and
∑∞

k=1 lk < +∞, then for any digit i0 almost all (with respect to the Lebesgue measure)
real numbers x ∈ [0, 1] contain symbol i0 of ROE-expansion only finitely many times and the
probability measure µξ is singular with respect to Lebesgue measure.

[1] Galambos J., The ergodic properties of the denominators in the Oppenheim expansion of
real numbers into infinite series of rationals. Proc. Amer. Math. Soc., 59, 1976, 9–13.

[2] Torbin G., Pratsiovyta I., The singularity of random Ostrogradskyi series of the second
kind. Probab. Th. Math. Stat, 2010, 60–68.
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about the faithfulness of cantor series expansion
cylinders family for the packing

dimension calculation

oleksandr slutskyi
National Pedagogical Dragomanov University, Kyiv, Ukraine

e-mail: slualexvas@gmail.com

The report is devoted to finding conditions for the fine packing systems faithfulness
with respect to packing dimension calculation. The packing dimension dimP [2] is fractal
dimension in some sense dual to the Hausdorff dimension dimH .

Let us fix some family Φ of balls from a metric space M .

Definition. A ball family Φ is called faithful with respect to packing dimension calculation
if dimP (E) = dimP (E,Φ), ∀E ⊂M .

Examples of packing faithful families:

1. The family of s-adic cylinders;

2. The family of Q-cylinders;

3. The family of Q̃-cylinders if infi,j qij > 0.

Theorem. Let Φ be the family of all possible closed intervals (cylinders), generated by the
Cantor series expansion of real numbers.

Then the family Φ is faithful for the Packing dimension if and only if

lim
k→∞

lnnk
lnn1 · n2 · . . . · nk−1

= 0.

[1] S. Albeverio, V. Koshmanenko, M. Pratsiovytyi and G. Torbin, On fine structure of
singularly continuous probability measures and random variables with independent Q̃-
symbols, Methods of Functional Analysis and Topology, 2 (2011), P. 97–111

[2] C. Tricot, Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos.
Soc., 91 (1982), P. 57–74
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nonlinear almost periodic difference equations

vasyl yu. slyusarchuk
National University of Water Management and Natural Resources Application

Rivne, Ukraine
e-mail: V.E.Slyusarchuk@gmail.com

Let E be the Banach space with norm ‖·‖. Denote by C0 the Banach space of continuous
and bounded functions x = x(t), t ∈ R, with values in E and with norm ‖x‖C0 = sup

t∈R
‖x(t)‖.

Define the shift operator Sτ : C0 → C0, τ ∈ R, by the formulae (Sτx)(t) = x(t+τ), t ∈ R.
The function x ∈ C0 is called almost periodic if the set {Sτx : τ ∈ R} is compact in C0.
Let K be the set of compact setsK ⊂ E and let R(x) be the set {x(t) : t ∈ R}. We denote

by DK the set of all elements of x ∈ C0 for each of which R(x) ⊂ K.
The operator H : C0 → C0 is called almost periodic if for every set K ∈ K and a sequence

(τk)k>1 of real numbers there exists a subsequence (τkl)l>1, which
lim

l1→∞, l2→∞
sup
x∈DK

∥∥∥Sτl1HS−τl1x− Sτl2HS−τl2x∥∥∥C0
= 0.

Consider the almost periodic difference operator F : C0 → C0 defined by the formulae
(Fx)(t) = G(t, x(t), x(t + τ1), . . . , x(t + τk)), t ∈ R, where x ∈ C0, k ∈ N, τ1, . . . , τk ∈ R
and G : R × Ek+1 → E is operator such that diamF (R ×M1 × . . . ×Mk+1) < +∞ for all
bounded sets M1 ⊂ E, . . . ,Mk+1 ⊂ E. Consider the difference equation

Fx = 0. (1)

Fix an arbitrary set K ∈ K. Let N(K) be the set of all solutions of equation (1), each of
which R(x) ⊂ K and diamR(x) > 0. Suppose that N(K) 6= ∅.

Fix an arbitrary element x∗ ∈ N(K). Let r(x∗, K) = sup{‖x − y‖ : x ∈ R(x∗), y ∈ K}.
Also fix the arbitrary number ε ∈ [0, r(x∗, K)]. We denote by Ω(x∗, K, ε) the set of all
elements of y ∈ C0, each of which R(y) ⊂ K and ‖y − x∗‖C0 ≥ ε.

Theorem. Let us suppose that K ∈ K, z ∈ N(K) and inf
y∈Ω(z,K,ε)

‖Fy‖C0 > 0 for each

ε ∈ (0, r(z,K)). Then solution z of equation (1) is almost periodic.

[1] Slyusarchuk V.Yu. Conditions of almost periodicity of bounded solutions of nonlin-
ear difference equations with continuous argument, Nelinijni Kolyvannya, 16, 1 (2013),
118–124 [in Ukrainian].

[2] Slyusarchuk V.Yu. Conditions of almost periodicity of bounded solutions of nonlinear
difference equations with discrete argument, Nelinijni Kolyvannya, 16, 3 (2013), 416–425
[in Ukrainian].
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on some problems of faithful covering family of
cylinders generated by the Q∞-expansion

olena smiian
National Pedagogical Dragomanov University, Kyiv, Ukraine
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Let Φ be a covering system consisting of Q∞-cylinders of [0, 1).
Let dimH(E,Φ) be a Hausdorff dimension of set E ⊂ [0, 1) with respect to covering

system Φ.
A covering family Φ is said to be faithful if

dimH(E,Φ) = dimH(E), ∀E ⊂ [0, 1].

{qi}∞i=1 be a sequence whith
∞∑
i=1

qi = 1 and
∞∑
i=1

qαi <∞ for α > 0. Denote:

S(α, i) =
∞∑

k=i+1

qαi

V (α, i) =
S(α, i)

qαi

F (α, β, i) = V (α, i)βi, β ∈ (0, 1)

Hypothesis. The family Φ(Q∞) of all possible cylinders of the Q∞-partition of the
interval [0, 1) is faithful if and only if

lim
i→∞

F (α, β, i) = 0 (1)

for ∀β ∈ (0, 1).

Counterexample. Consider the following sequence:

qi =


K

2i
when i = 2n− 1,

K

3i
when i = 2n,

where K = 24
19
.

Then the covering system generated by theQ∞-expansion is faithful, but sequence doesn’t
satisfy condition (1) for all β ∈ (0, 1).
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a smoothly linearizable circle diffeomorphism
with breaks
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A circle diffeomorphism with breaks is an orientation-preserving circle homeomorphism
that is piecewise C2 together with its inverse. By Denjoy’s theorem, the equality of irrational
rotation numbers is necessary and sufficient for such mappings to be continuously conjugate.
Two such mappings are called break equivalent, if there exists a continuous conjugacy be-
tween them that sends every break point of the first one into a break point of the second
one with the same size of break (i.e. the ratio of left-hand derivative to right-hand one).

Obviously, the condition of break equivalence is necessary for C1 conjugacy. In some cases
that condition has been proved also sufficient [1, 2] (rigidity results). In many cases [3, 4]
it was shown that non-break-equivalence implies that the conjugacy is a singular function.
We call circle diffeomorphisms with breaks break equivalent in broad sense, if one of them
can be adjusted by a piecewise C2 conjugacy to became break equivalent to another.

For years, there stood a colloquial hypothesis that only break-equivalent in broad sense
circle diffeomorphisms can be smoothly conjugate. We disprove it by constructing an ex-
ample of a piece-wise linear circle homeomorphism with 4 non-trivial break points lying on
different trajectories that is absolutely continuously linearizable (i.e. conjugate to a rigid
rotation). In other words, its invariant measure has absolutely continuous density w. r. t. the
Lebesgue measure. The rotation number for our example can be chosen either Diophantine
or Liouvillean, but not of bounded type. Also, this is a first constructive example of a circle
diffeomorphism, which linearization is absolutely continuous, but not piece-wise C1, as it is
non-differentiable on an everywhere dense set of points.

[1] K. Khanin, A. Teplinsky. Renormalization horseshoe and rigidity for circle diffeomor-
phisms with breaks. Comm. Math. Phys. 320 (2013), 347–377.

[2] K. Cunha, D. Smania. Rigidity for piecewise smooth homeomorphisms on the circle.
Advances in Mathematics 250 (2014), 193–226.

[3] A. Adouani, Conjugation between circle maps with several break points. To appear in:
Ergodic Theory and Dynamical Systems.

[4] A. Dzhalilov, D. Mayer, U. Safarov, Conjugacies between P-homeomorphisms with several
breaks. arxiv.org/abs/1408.5732. To appear in print.
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four dimensional and singular perturbation systems
of differential equations and two dimensional

dynamical system with impulse

victor urmanchev
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e-mail: viktorurmancev@gmail.com

Definition 1. Special four dimensional and singular perturbation system of differential
equations is  ε−̇→x =

−→
f (−→x ,−→y )

−̇→y = −→g (−→x ,−→y )

where ε is small positive parameter, −→x ∈ R2, −→y ∈ R2,
−→
f ∈ C1(D), −→g ∈ C(D), D ∈ R4

Let topology of R2 to be a topology which is generated by two dimensional Euclid metric.
Definition 2. Special two dimensional dynamical system with impulse is four objects

(W,M,A,H) where W is two dimensional subset of R2 with relative topology; M is one
dimensional subset of R2 with relative topology which is defined by equation G(x1, x2) = 0
and M ∈ ∂W ; A is mapping M in W which is named as an impulse action(jump operator);
H is mapping topological product (W \M) × R1 in W where H|Si = Hi, Si = {(x1, x2) :
(−1)i+1 ·G(x1, x2) > 0} Hi(t, x

0
1, x

0
2); is solution of the Cauchy problem{

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

where (x1, x2 ∈ Si), (x0
1, x

0
2 ∈ Si).

Dynamics of elements w ∈ W is accomplished by the following algorithm: if w /∈ W
then w is moved by R1 group action H until W will not be on M . If W ∈ M then w
undergoes mapping of A. On the basis of the theory of singular perturbation system of
differential equations [1], it was given the solution of a problem with association of the
special four dimensional and singular perturbation system of differential equations to special
two dimensional dynamical system with impulse. It was also considered some problems of
associated two dimensional dynamical systems with impulse. Some examples are given.

[1] A. N. Tikhonov, Matematicheskiy sbornik, 1952, 31, 3, 575–586 [in Russian].
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comparison of two strategies in the problem of
“conquest” of territory

inga verygina
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The theory of conflict dynamical systems developed in [1–3] is applied for construction
of an abstract model in the problem of redistribution of resource space (territory) between
two opponents.

Assume the conflict space Ω = [0, 1] is structured in the sense that it consecutively divided

into regions Ω =
2⋃

i1,...,ik=1

Ωi1...ik , |Ωi1...ik | =
(

1
2

)k
, k = 1, 2, . . . .

Let opponents A and B are initially distributed along Ω according to matrixes P =
{aij}i=1,2;j=1,2,... with a1j = α, a2j = 1 − α, 0 < α < 1/2 and R = {bij}i=1,2;j=1,2,...

with b1j = β, b2j = 1 − β, 0 < β < 1, respectively. The occupation probabilities for
opponents A and B to be in each region Ωi1...ik are defined by pi1...ik = αm(1 − α)k−m and
ri1...ik = βm(1 − β)k−m, resp., where m stands for a number of indexes il = 1, 1 ≤ l ≤ k in
Ωi1...ik . According to the theory [2], as a result of the conflict interaction, a region Ωi1...ik

will conquered by one of the opponents, say A, only if pi1...ik > ri1...ik . Each such region we
denote as ΩA

i1...ik
.

Theorem. If 1/2− α < |1/2− β|, then limk→∞
∑2

i1,...,ik=1

∣∣ΩA
i1...ik

∣∣ = 1.

Therefore, if the initial distribution of opponent A along Ω is more uniform than in
opponent B, then the Lebesgue measure of the territory controlled by the opponent A
converges to 1 with k → ∞. In turn, B completely loses its territory. Thus, in the conflict
struggle the strategy of uniform distribution is optimal.

[1] V. Koshmanenko, Theorem of conflicts for a pair of probability measures, Math. Methods
of Operations Research, 59, (2004), 2, 303–313.

[2] V. Koshmanenko, The infinite direct product of probability measures and structural sim-
ilarity, Methods Funct. Anal. Topology, 17 (2011), 1, 20-28.

[3] V. Koshmanenko, Existence theorems of the ω-limit states for conflict dynamical systems,
Methods Funct. Anal. Topology, 20 (2014), 4, 379-390.

58



Dynamical Systems and Their Applications June 22 – 26, 2015, Kyiv, Ukraine

on fractal properties of probability measures
with independent x−Q∞-digits

irina garko
National Pedagogical Dragomanov University, Kyiv, Ukraine

e-mail: garko−irinka@mail.ru

The report is devoted to the development of DP-approach to study the fractal properties
of spectra and minimal dimensional supports of probability measures from a family, which
contains probability measures with independent digits of Q∞-representation, Q̃∞-represen-
tation, Lüroth expansions and their alternating modifications as special cases.

There are many papers devoted to the study of continuous transformations preserving the
Hausdorff-Besicovich dimension (for example, [1]). It has been proven, in particular, that the
problem of study of continuous DP-transformations of the unit interval is equivalent to the
problem of study of DP-properties of continuous probability distribution functions. At the
same time there are no papers on the DP-properties of transformations, for which the set of
points of discontinuity is an everywhere dense set on some closed interval. Obviously, such
transformations are dominating (in the sense of cardinality). On the other hand, it is helpful
to study such transformations from the point of view of the development of methods for
the calculation of the fractal dimensions and investigating fractal properties of probability
distributions.

The main approach to the study of probability measures with independent x−Q∞-digits,
which is represented in this talk, is that for a fixed stochastic vector Q∞ and a fixed real
number x ∈ [0, 1] propose the consider the bijection

ϕ
(

∆Q∞
α1(z)α2(z)...αk(z)...

)
= ∆x−Q∞

α1(z)α2(z)...αk(z)...,

and study conditions under which ϕ preserves the Lebegue measure and the Hausdorff–Besi-
covitch dimension on the unit interval.

To investigate DP-properties of the bijection ϕ we study the problem related to the faith-
fulness of the covering systems connected with the above mentioned expansions for the cal-
culation the Hausdorff-Besicovich dimension.

[1] S. Albeverio, M. Pratsiovytyi,G. Torbin, Transformations preserving the Hausdorff–Besi-
covitch dimension. Central European Journal of Mathematics 6 (2008), 119–128.

[2] I. Garko, G. Torbin, On x−Q∞-expansion of real numbers and problem connected with it.
International scientific conference: "Asymptotic methods in theory of differential equa-
tions" dedicated to the 80-th universary of Shkil M.I., NPU, Kyiv, 2012, P. 48.
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