Dynamical Systems and Their Applications June 22 - 26, 2015, Kyiv, Ukraine

Comparison of two strategies in the problem of "conquest" of territory

INGA VERYGINA

National Technical University of Ukraine "KPI", Kyiv, Ukraine e-mail: veringa@i.ua

The theory of conflict dynamical systems developed in [1, 2, 3] is applied for construction of an abstract model in the problem of redistribution of resource space (territory) between two opponents.

Assume the conflict space $\Omega = [0,1]$ is structured in the sense that it consecutively divided into regions $\Omega = \bigcup_{i_1,\dots,i_k=1}^2 \Omega_{i_1\dots i_k}, \quad |\Omega_{i_1\dots i_k}| = \left(\frac{1}{2}\right)^k, \quad k = 1, 2, \dots,$

Let opponents A and B are initially distributed along Ω according to matrixes $P = \{a_{ij}\}_{i=1,2;j=1,2,\ldots}$ with $a_{1j} = \alpha$, $a_{2j} = 1 - \alpha$, $0 < \alpha < 1/2$ and $R = \{b_{ij}\}_{i=1,2;j=1,2,\ldots}$ with $b_{1j} = \beta$, $b_{2j} = 1 - \beta$, $0 < \beta < 1$, respectively. The occupation probabilities for opponents A and B to be in each region $\Omega_{i_1\dots i_k}$ are defined by $p_{i_1\dots i_k} = \alpha^m (1-\alpha)^{k-m}$ and $r_{i_1\dots i_k} = \beta^m (1-\beta)^{k-m}$, resp., where m stands for a number of indexes $i_l = 1, 1 \leq l \leq k$ in $\Omega_{i_1\dots i_k}$. According to the theory [2], as a result of the conflict interaction, a region $\Omega_{i_1\dots i_k}$ will conquered by one of the opponents, say A, only if $p_{i_1\dots i_k} > r_{i_1\dots i_k}$. Each such region we denote as $\Omega^A_{i_1\dots i_k}$.

Theorem. If $1/2 - \alpha < |1/2 - \beta|$, then $\lim_{k \to \infty} \sum_{i_1, \dots, i_k=1}^2 |\Omega_{i_1 \dots i_k}^A| = 1$.

Therefore, if the initial distribution of opponent A along Ω is more uniform than in opponent B, then the Lebesgue measure of the territory controlled by the opponent A converges to 1 with $k \to \infty$. In turn, B completely loses its territory. Thus, in the conflict struggle the strategy of uniform distribution is optimal.

References

- V. Koshmanenko, Theorem of conflicts for a pair of probability measures, Math. Methods of Operations Research, 59, (2004), no. 2, 303–313.
- [2] V. Koshmanenko, The infinite direct product of probability measures and structural similarity, Methods Funct. Anal. Topology, 17 (2011), no. 1, 20-28.
- [3] V. Koshmanenko, Existence theorems of the ω -limit states for conflict dynamical systems,, Methods Funct. Anal. Topology, **20** (2014), no. 4, 379-390.