ONE SPECIAL CONSTRUCTION IN THE SPECTRAL THEORY OF C_0 -SEMIGROUPS.

VITALII MARCHENKO

B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine Kharkiv, Ukraine

e-mail: v.marchenko@ilt.kharkov.ua, vitalii.marchenko@karazin.ua

In joint work with Prof. Dr. Grigory M. Sklyar (Institute of Mathematics, University of Szczecin, Szczecin, Poland & V.N. Karazin Kharkiv National University, Kharkiv, Ukraine) we present the construction of the generator of a C_0 -group with the following properties. It has simple eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$, which essentially cluster at infinity, i.e. $\lim_{n\to\infty} |\lambda_n - \lambda_{n+1}| = 0$, and corresponding family of eigenvectors is dense but do not form a Schauder basis. This construction is closely related with the recent results of G.Q. Xu et al. [1] and H. Zwart [2] on Riesz basis property of eigenvectors (eigenspaces) of infinitesimal operators. The discrete Hardy inequality for p = 2 plays a key role in our approach.

Let *H* be a Hilbert space with norm $\|\cdot\|$ and Riesz basis $\{e_n\}_{n=1}^{\infty}$. Consider the operator *T* defined on *H* as $Te_n = e_{n+1}$. By $H_1(\{e_n\})$ we then denote the completion of the space $H_1^0(\{e_n\}) = \{x \in H : \|x\|_1 = \|(I - T)x\|\}$. It can be shown that

$$H_1(\{e_n\}) = \left\{ x = (\mathbf{f}) \sum_{n=1}^{\infty} c_n e_n : \{c_n\}_{n=1}^{\infty} \in \ell_2(\Delta) \right\},\$$

where (f) $\sum_{n=1}^{\infty} c_n e_n$ is a formal series, $\ell_2(\Delta)$ is the space of all sequences whose differences are 2-absolutely summable, and Δ denotes a difference operator. It turns out that $\{e_n\}_{n=1}^{\infty}$ is dense in $H_1(\{e_n\})$ but does not form a Schauder basis in $H_1(\{e_n\})$.

The main result of the work can be formulated as follows. The operator $A : H_1(\{e_n\}) \supset D(A) \mapsto H_1(\{e_n\})$ defined by the formula $Ax = A(\mathbf{f}) \sum_{n=1}^{\infty} c_n e_n = (\mathbf{f}) \sum_{n=1}^{\infty} i \ln n \cdot c_n e_n$, with domain

$$D(A) = \left\{ x = (\mathbf{f}) \sum_{n=1}^{\infty} c_n e_n \in H_1(\{e_n\}) : \{\ln n \cdot c_n\}_{n=1}^{\infty} \in \ell_2(\Delta) \right\},\$$

generates a C_0 -group $\{e^{At}\}_{-\infty < t < \infty}$ on $H_1(\{e_n\})$. Moreover, we note that, surprisingly, the constructed C_0 -group $\{e^{At}\}_{-\infty < t < \infty}$ has a linear growth when $t \to \pm \infty$.

References

- G. Q. Xu, S. P. Yung The expansion of a semigroup and a Riesz basis criterion. J. Differential Equations 210 (2005), 1–24.
- [2] H. Zwart Riesz basis for strongly continuous groups. J. Differential Equations 249 (2010), 2397–2408.